首页 > 最新文献

Frontiers in Energy最新文献

英文 中文
Dimethyl ether: A promising fuel for marine engines
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-02-28 DOI: 10.1007/s11708-025-0986-4
Zhen Huang, Wugao Zhang, Dong Han, Lei Zhu, He Lin, Bin Guan
{"title":"Dimethyl ether: A promising fuel for marine engines","authors":"Zhen Huang, Wugao Zhang, Dong Han, Lei Zhu, He Lin, Bin Guan","doi":"10.1007/s11708-025-0986-4","DOIUrl":"10.1007/s11708-025-0986-4","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"28 - 32"},"PeriodicalIF":3.1,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highlights of key advances in China’s wind turbines technology in 2024 2024 年中国风力涡轮机技术主要进展亮点
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-02-20 DOI: 10.1007/s11708-025-0987-3
Haiyan Qin, Hongyuan Yang, Haoran Li, Guangping Du
{"title":"Highlights of key advances in China’s wind turbines technology in 2024","authors":"Haiyan Qin, Hongyuan Yang, Haoran Li, Guangping Du","doi":"10.1007/s11708-025-0987-3","DOIUrl":"10.1007/s11708-025-0987-3","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"18 - 27"},"PeriodicalIF":3.1,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highlights of mainstream solar cell efficiencies in 2024
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-01-30 DOI: 10.1007/s11708-025-0985-5
Wenzhong Shen, Yixin Zhao, Feng Liu
{"title":"Highlights of mainstream solar cell efficiencies in 2024","authors":"Wenzhong Shen, Yixin Zhao, Feng Liu","doi":"10.1007/s11708-025-0985-5","DOIUrl":"10.1007/s11708-025-0985-5","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"8 - 17"},"PeriodicalIF":3.1,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Top 8 most influential events in global carbon neutrality and climate change response in 2024
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-01-15 DOI: 10.1007/s11708-025-0981-9
Research Institute of Carbon Neutrality, Shanghai Jiao Tong University
{"title":"Top 8 most influential events in global carbon neutrality and climate change response in 2024","authors":"Research Institute of Carbon Neutrality, Shanghai Jiao Tong University","doi":"10.1007/s11708-025-0981-9","DOIUrl":"10.1007/s11708-025-0981-9","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"1 - 3"},"PeriodicalIF":3.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Fronts 2024 announced engineering fronts in the fields of Energy and Electrical Science and Technology
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2025-01-15 DOI: 10.1007/s11708-025-0980-x
Liang Yin, Ruiqin Liu, Yonglin Ju
{"title":"Engineering Fronts 2024 announced engineering fronts in the fields of Energy and Electrical Science and Technology","authors":"Liang Yin, Ruiqin Liu, Yonglin Ju","doi":"10.1007/s11708-025-0980-x","DOIUrl":"10.1007/s11708-025-0980-x","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"4 - 7"},"PeriodicalIF":3.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance enhancement, economic analysis, and futuristic insight of single-well medium-deep and deep geothermal systems
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-11-30 DOI: 10.1007/s11708-024-0971-3
Ang Li, R. S. Anand, Wenbo Huang, Juanwen Chen, Zhibin Li, Jian Guo, Qingshan Ma, Fangming Jiang

Geothermal energy is clean and renewable, derived from the heat stored within accessible depths of the Earth’s crust. The adoption of a single-well system for medium-deep and deep geothermal energy extraction has attracted significant interest from the scientific and industrial communities because it effectively circumvents issues such as downhole inter-well connections and induced seismicity. However, the low heat transfer capacity in geothermal formations limits the heat extraction performance of single-well systems and hinders their commercial deployment. This review covers various enhancement concepts for optimizing the heat transfer within single-well systems, emphasizing critical parameters such as heat transfer area, heat transfer coefficient, and temperature difference. Additionally, it presents the thermo-economic evaluation of different configurations of single-well borehole heat exchangers and superlong gravity heat pipes (SLGHPs). The SLHGP, utilizing phase-change heat transfer, is recognized as a highly effective and continuously productive technology, capable of extracting over 1 MW of heat. Its pumpless operation and ease of installation in abandoned wells make it cost-effective, offering a promising economic advantage over traditional geothermal systems. It also highlights the challenges and potential research opportunities that can help identify gaps in research to enhance the performance of single-well geothermal systems.

{"title":"Performance enhancement, economic analysis, and futuristic insight of single-well medium-deep and deep geothermal systems","authors":"Ang Li,&nbsp;R. S. Anand,&nbsp;Wenbo Huang,&nbsp;Juanwen Chen,&nbsp;Zhibin Li,&nbsp;Jian Guo,&nbsp;Qingshan Ma,&nbsp;Fangming Jiang","doi":"10.1007/s11708-024-0971-3","DOIUrl":"10.1007/s11708-024-0971-3","url":null,"abstract":"<div><p>Geothermal energy is clean and renewable, derived from the heat stored within accessible depths of the Earth’s crust. The adoption of a single-well system for medium-deep and deep geothermal energy extraction has attracted significant interest from the scientific and industrial communities because it effectively circumvents issues such as downhole inter-well connections and induced seismicity. However, the low heat transfer capacity in geothermal formations limits the heat extraction performance of single-well systems and hinders their commercial deployment. This review covers various enhancement concepts for optimizing the heat transfer within single-well systems, emphasizing critical parameters such as heat transfer area, heat transfer coefficient, and temperature difference. Additionally, it presents the thermo-economic evaluation of different configurations of single-well borehole heat exchangers and superlong gravity heat pipes (SLGHPs). The SLHGP, utilizing phase-change heat transfer, is recognized as a highly effective and continuously productive technology, capable of extracting over 1 MW of heat. Its pumpless operation and ease of installation in abandoned wells make it cost-effective, offering a promising economic advantage over traditional geothermal systems. It also highlights the challenges and potential research opportunities that can help identify gaps in research to enhance the performance of single-well geothermal systems.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"33 - 58"},"PeriodicalIF":3.1,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate change and innovative paths to a more sustainable future 气候变化和通往更可持续未来的创新途径
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-11-10 DOI: 10.1007/s11708-024-0965-1
Steven Chu, Qi Wang

The challenges posed by climate change and greenhouse gas net-zero transition are discussed. Several key technology areas which require innovation are briefly reviewed in this article, including renewables, energy storage, distributed energy resources, CO2 utilization, agriculture, and the synergy between Al and energy transition. The shift in mindset from “re-cycling” to “re-using” and a redefinition of “wealth” for a more sustainable future are also proposed.

讨论了气候变化和温室气体净零转型带来的挑战。本文简要回顾了需要创新的几个关键技术领域,包括可再生能源、能源储存、分布式能源、二氧化碳利用、农业以及人工智能与能源转型之间的协同作用。此外,他们还建议将观念从“再循环”转变为“再利用”,并为更可持续的未来重新定义“财富”。
{"title":"Climate change and innovative paths to a more sustainable future","authors":"Steven Chu,&nbsp;Qi Wang","doi":"10.1007/s11708-024-0965-1","DOIUrl":"10.1007/s11708-024-0965-1","url":null,"abstract":"<div><p>The challenges posed by climate change and greenhouse gas net-zero transition are discussed. Several key technology areas which require innovation are briefly reviewed in this article, including renewables, energy storage, distributed energy resources, CO<sub>2</sub> utilization, agriculture, and the synergy between Al and energy transition. The shift in mindset from “re-cycling” to “re-using” and a redefinition of “wealth” for a more sustainable future are also proposed.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 6","pages":"717 - 726"},"PeriodicalIF":3.1,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glow-in-the-dark: Exploring the opportunities and challenges of bioluminescent plankton as a natural light source 在黑暗中发光:探索生物发光浮游生物作为自然光源的机遇和挑战
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-11-10 DOI: 10.1007/s11708-024-0966-0
Siti Hamisah Tapsir, Siew Moi Phang, Nor Aieni Mokhtar, Swee Sen Teo, Lai Huat Lim, Kah Hou Teng, Swee Pin Yeap

Bioluminescent plankton are marine organisms capable of emitting visible light through chemical reactions in their bodies. This unique biochemical trait is attributed to a luciferin-luciferase reaction, which produces a striking blue light. This fascinating phenomenon, often referred to as the “blue tears” effect, has become a major attraction for tourist attractions in many countries. Since their discovery, most investigations related to these marine organisms have primarily focused on the fields of biology, ecology, oceanography, and microbiology. However, there has been limited to almost no study of their potential applications in the area of energy or lighting. This paper provides viewpoints on the opportunities for using these marine organisms and their light-emitting characteristics as an energy-efficient and environmentally friendly lighting solution, rather than just as a tourist attraction. Additionally, it addresses the challenges associated with sustaining the growth of bioluminescent plankton collected from the marine environment, the importance of establishing suitable protocols for in-house cultivation, challenges in stimulating the light-production at desired time, constraint imposed by the circadian rhythm, the toxicity of certain bioluminescent plankton, and the capacity of their luminous intensity.

发光浮游生物是一种能够通过体内化学反应发出可见光的海洋生物。这种独特的生化特性归因于荧光素-荧光素酶反应,该反应产生引人注目的蓝光。这种迷人的现象,通常被称为“蓝眼泪”效应,已成为许多国家旅游景点的主要吸引力。自从它们被发现以来,大多数与这些海洋生物有关的研究主要集中在生物学、生态学、海洋学和微生物学领域。然而,对它们在能源或照明领域的潜在应用的研究几乎没有。本文提供了利用这些海洋生物及其发光特性作为节能和环保照明解决方案的机会的观点,而不仅仅是作为一个旅游景点。此外,它还解决了与维持从海洋环境中收集的生物发光浮游生物的生长有关的挑战,建立合适的室内培养方案的重要性,在所需时间刺激发光的挑战,昼夜节律的限制,某些生物发光浮游生物的毒性以及它们发光强度的能力。
{"title":"Glow-in-the-dark: Exploring the opportunities and challenges of bioluminescent plankton as a natural light source","authors":"Siti Hamisah Tapsir,&nbsp;Siew Moi Phang,&nbsp;Nor Aieni Mokhtar,&nbsp;Swee Sen Teo,&nbsp;Lai Huat Lim,&nbsp;Kah Hou Teng,&nbsp;Swee Pin Yeap","doi":"10.1007/s11708-024-0966-0","DOIUrl":"10.1007/s11708-024-0966-0","url":null,"abstract":"<div><p>Bioluminescent plankton are marine organisms capable of emitting visible light through chemical reactions in their bodies. This unique biochemical trait is attributed to a luciferin-luciferase reaction, which produces a striking blue light. This fascinating phenomenon, often referred to as the “blue tears” effect, has become a major attraction for tourist attractions in many countries. Since their discovery, most investigations related to these marine organisms have primarily focused on the fields of biology, ecology, oceanography, and microbiology. However, there has been limited to almost no study of their potential applications in the area of energy or lighting. This paper provides viewpoints on the opportunities for using these marine organisms and their light-emitting characteristics as an energy-efficient and environmentally friendly lighting solution, rather than just as a tourist attraction. Additionally, it addresses the challenges associated with sustaining the growth of bioluminescent plankton collected from the marine environment, the importance of establishing suitable protocols for in-house cultivation, challenges in stimulating the light-production at desired time, constraint imposed by the circadian rhythm, the toxicity of certain bioluminescent plankton, and the capacity of their luminous intensity.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 6","pages":"730 - 734"},"PeriodicalIF":3.1,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defect engineering in two-dimensional materials for photocatalysis: A mini-review of first-principles design
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-10-30 DOI: 10.1007/s11708-024-0961-5
Yiqing Chen, Xiao-Yan Li, Pengfei Ou

Two-dimensional (2D) materials have emerged as a significant class of materials promising for photocatalysis, and defect engineering offers an effective route for enhancing their photocatalytic performance. In this mini-review, a first-principles design perspective on defect engineering in 2D materials for photocatalysis is provided. Various types of defects in 2D materials, spanning point, line, and planar defects are explored, and their influence on the intrinsic properties and photocatalytic efficacy of these materials is highlighted. Additionally, the use of theoretical descriptors to characterize the stability, electronic, optical, and catalytic properties of 2D defective systems is summarized. Central to the discussion is the understanding of electronic structure, optical properties, and reaction mechanisms to inform the rational design of photocatalysts based on 2D materials for enhanced photocatalytic performance. This mini-review aims to provide insights into the computational design of 2D defect systems tailored for efficient photocatalytic applications.

{"title":"Defect engineering in two-dimensional materials for photocatalysis: A mini-review of first-principles design","authors":"Yiqing Chen,&nbsp;Xiao-Yan Li,&nbsp;Pengfei Ou","doi":"10.1007/s11708-024-0961-5","DOIUrl":"10.1007/s11708-024-0961-5","url":null,"abstract":"<div><p>Two-dimensional (2D) materials have emerged as a significant class of materials promising for photocatalysis, and defect engineering offers an effective route for enhancing their photocatalytic performance. In this mini-review, a first-principles design perspective on defect engineering in 2D materials for photocatalysis is provided. Various types of defects in 2D materials, spanning point, line, and planar defects are explored, and their influence on the intrinsic properties and photocatalytic efficacy of these materials is highlighted. Additionally, the use of theoretical descriptors to characterize the stability, electronic, optical, and catalytic properties of 2D defective systems is summarized. Central to the discussion is the understanding of electronic structure, optical properties, and reaction mechanisms to inform the rational design of photocatalysts based on 2D materials for enhanced photocatalytic performance. This mini-review aims to provide insights into the computational design of 2D defect systems tailored for efficient photocatalytic applications.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"59 - 68"},"PeriodicalIF":3.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Core-membrane microstructured amine-modified mesoporous biochar templated via ZnCl2/KCl for CO2 capture ZnCl2/KCl模板化核膜微结构胺修饰介孔生物炭用于CO2捕集
IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Pub Date : 2024-10-30 DOI: 10.1007/s11708-024-0964-2
Chen Zhang, Duoyong Zhang, Xinqi Zhang, Yongqiang Tian, Liwei Wang

Mesoporous biochar (MC) derived from biomass is synthesized using a dual-salt template method involving ZnCl2 and KCl, followed by impregnation with polyethyleneimine (PEI) of varying average molecular weights under vacuum conditions to construct a core-membrane structure for enhancing carbon capture performance. The resulting MC exhibits a highly intricate network of micropores and abundant mesopores, along with defects in graphitic structures, effectively facilitating robust PEI loading. Among the PEI-modified samples, PEI-600@MC demonstrates the highest CO2 sorption capacity, achieving approximately 3.35 mmol/g at 0.1 MPa and 70 °C, with an amine efficiency of 0.32 mmol CO2/mmol N. The introduction of amine functional groups in PEI significantly enhances the sorption capacity compared to bare MC. Additionally, PEI with lower average molecular weights exhibits a superior sorption performance at low pressures but shows a reduced thermal stability compared to higher molecular weight counterparts. The area of sorption hysteresis loops gradually decreases with increasing temperature and average molecular weight of PEI. The equilibrium sorption isotherms are accurately modeled by the Langmuir equation, revealing a maximum sorption capacity of approximately 3.53 mmol/g at 70 °C and saturation pressure. This work highlights the potential of dual-salts templated biomass-derived MC, modified with PEI, as an effective, widely available, and cost-efficient material for CO2 capture.

采用双盐模板法合成生物质介孔生物炭(MC),并在真空条件下用不同平均分子量的聚乙烯亚胺(PEI)浸渍,构建核膜结构以提高碳捕获性能。由此产生的MC具有高度复杂的微孔网络和丰富的介孔,以及石墨结构中的缺陷,有效地促进了PEI的鲁棒加载。在PEI修饰的样品中,PEI-600@MC表现出最高的CO2吸附能力,在0.1 MPa和70°C下可达到约3.35 mmol/g,胺效率为0.32 mmol CO2/mmol N. PEI中胺官能团的引入显著提高了吸附能力。具有较低平均分子量的PEI在低压下表现出优越的吸附性能,但与高分子量的对应物相比,其热稳定性降低。随着温度和PEI平均分子量的升高,吸附滞回线面积逐渐减小。Langmuir方程精确模拟了平衡吸附等温线,表明在70°C和饱和压力下的最大吸附容量约为3.53 mmol/g。这项工作强调了用PEI修饰的双盐模板生物质衍生MC作为一种有效的、广泛可用的、成本效益高的二氧化碳捕获材料的潜力。
{"title":"Core-membrane microstructured amine-modified mesoporous biochar templated via ZnCl2/KCl for CO2 capture","authors":"Chen Zhang,&nbsp;Duoyong Zhang,&nbsp;Xinqi Zhang,&nbsp;Yongqiang Tian,&nbsp;Liwei Wang","doi":"10.1007/s11708-024-0964-2","DOIUrl":"10.1007/s11708-024-0964-2","url":null,"abstract":"<div><p>Mesoporous biochar (MC) derived from biomass is synthesized using a dual-salt template method involving ZnCl<sub>2</sub> and KCl, followed by impregnation with polyethyleneimine (PEI) of varying average molecular weights under vacuum conditions to construct a core-membrane structure for enhancing carbon capture performance. The resulting MC exhibits a highly intricate network of micropores and abundant mesopores, along with defects in graphitic structures, effectively facilitating robust PEI loading. Among the PEI-modified samples, PEI-600@MC demonstrates the highest CO<sub>2</sub> sorption capacity, achieving approximately 3.35 mmol/g at 0.1 MPa and 70 °C, with an amine efficiency of 0.32 mmol CO<sub>2</sub>/mmol N. The introduction of amine functional groups in PEI significantly enhances the sorption capacity compared to bare MC. Additionally, PEI with lower average molecular weights exhibits a superior sorption performance at low pressures but shows a reduced thermal stability compared to higher molecular weight counterparts. The area of sorption hysteresis loops gradually decreases with increasing temperature and average molecular weight of PEI. The equilibrium sorption isotherms are accurately modeled by the Langmuir equation, revealing a maximum sorption capacity of approximately 3.53 mmol/g at 70 °C and saturation pressure. This work highlights the potential of dual-salts templated biomass-derived MC, modified with PEI, as an effective, widely available, and cost-efficient material for CO<sub>2</sub> capture.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 6","pages":"863 - 874"},"PeriodicalIF":3.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1