Spatio-temporal graph attention networks for traffic prediction

{"title":"Spatio-temporal graph attention networks for traffic prediction","authors":"","doi":"10.1080/19427867.2023.2261706","DOIUrl":null,"url":null,"abstract":"<div><div>The constraints of road network topology and dynamically changing traffic states over time make the task of traffic flow prediction extremely challenging. Most existing methods use CNNs or GCNs to capture spatial correlation. However, convolution operator-based methods are far from optimal in their ability to fuse node features and topology to adequately model spatial correlation. In order to model the spatio-temporal features of traffic flow more effectively, this paper proposes a traffic flow prediction model, the Spatio-Temporal Graph Attention Network (STGAN), which is based on graph attention mechanisms and residually connected gated recurrent units. Specifically, a graph attention mechanism and a random wandering mechanism are used to extract spatial features of the traffic network, and gated recurrent units with residual connections are used to extract temporal features. Experimental results on real-world public transportation datasets show that our approach not only yields state-of-the-art performance, but also exhibits competitive computational efficiency and improves the accuracy of traffic flow prediction.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"16 9","pages":"Pages 978-988"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786723002448","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The constraints of road network topology and dynamically changing traffic states over time make the task of traffic flow prediction extremely challenging. Most existing methods use CNNs or GCNs to capture spatial correlation. However, convolution operator-based methods are far from optimal in their ability to fuse node features and topology to adequately model spatial correlation. In order to model the spatio-temporal features of traffic flow more effectively, this paper proposes a traffic flow prediction model, the Spatio-Temporal Graph Attention Network (STGAN), which is based on graph attention mechanisms and residually connected gated recurrent units. Specifically, a graph attention mechanism and a random wandering mechanism are used to extract spatial features of the traffic network, and gated recurrent units with residual connections are used to extract temporal features. Experimental results on real-world public transportation datasets show that our approach not only yields state-of-the-art performance, but also exhibits competitive computational efficiency and improves the accuracy of traffic flow prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于交通预测的时空图注意力网络
路网拓扑结构的限制和随时间动态变化的交通状态使得交通流量预测任务极具挑战性。大多数现有方法都使用 CNN 或 GCN 来捕捉空间相关性。然而,基于卷积算子的方法在融合节点特征和拓扑结构以充分模拟空间相关性方面远未达到最佳效果。为了更有效地模拟交通流的时空特征,本文提出了一种基于图注意机制和残差连接门控递归单元的交通流预测模型--时空图注意网络(STGAN)。具体来说,图注意力机制和随机游走机制用于提取交通网络的空间特征,而具有残差连接的门控递归单元则用于提取时间特征。在现实世界公共交通数据集上的实验结果表明,我们的方法不仅能产生最先进的性能,还能展现出极具竞争力的计算效率,并提高交通流预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
14.30%
发文量
79
审稿时长
>12 weeks
期刊介绍: Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research. The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.
期刊最新文献
Analysis of the factors affecting the time spent on leisure activities by using an ordered logit model A fast-response mathematical programming approach for delivering disaster relief goods: an earthquake case study The Integrated optimization of intermittent lane intersection design and dynamic signal control: efficiency, safety, and fuel consumption Parcel locker location problem with selectable volume sizes and heterogeneous customers in the last mile delivery Investigating the spatial heterogeneity of factors influencing speeding-related crash severities using correlated random parameter order models with heterogeneity-in-means
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1