Clustering Analysis of Multivariate Data: A Weighted Spatial Ranks-Based Approach

IF 1 Q3 STATISTICS & PROBABILITY Journal of Probability and Statistics Pub Date : 2023-09-30 DOI:10.1155/2023/8849404
Mohammed H. Baragilly, Hend Gabr, Brian H. Willis
{"title":"Clustering Analysis of Multivariate Data: A Weighted Spatial Ranks-Based Approach","authors":"Mohammed H. Baragilly, Hend Gabr, Brian H. Willis","doi":"10.1155/2023/8849404","DOIUrl":null,"url":null,"abstract":"Determining the right number of clusters without any prior information about their numbers is a core problem in cluster analysis. In this paper, we propose a nonparametric clustering method based on different weighted spatial rank (WSR) functions. The main idea behind WSR is to define a dissimilarity measure locally based on a localized version of multivariate ranks. We consider a nonparametric Gaussian kernel weights function. We compare the performance of the method with other standard techniques and assess its misclassification rate. The method is completely data-driven, robust against distributional assumptions, and accurate for the purpose of intuitive visualization and can be used both to determine the number of clusters and assign each observation to its cluster.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":"74 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8849404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Determining the right number of clusters without any prior information about their numbers is a core problem in cluster analysis. In this paper, we propose a nonparametric clustering method based on different weighted spatial rank (WSR) functions. The main idea behind WSR is to define a dissimilarity measure locally based on a localized version of multivariate ranks. We consider a nonparametric Gaussian kernel weights function. We compare the performance of the method with other standard techniques and assess its misclassification rate. The method is completely data-driven, robust against distributional assumptions, and accurate for the purpose of intuitive visualization and can be used both to determine the number of clusters and assign each observation to its cluster.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多变量数据的聚类分析:一种基于加权空间秩的方法
在没有任何先验信息的情况下确定正确的聚类数量是聚类分析的核心问题。本文提出了一种基于不同加权空间秩函数的非参数聚类方法。WSR背后的主要思想是基于多变量排名的本地化版本在本地定义不相似性度量。我们考虑一个非参数高斯核权函数。我们比较了该方法与其他标准技术的性能,并评估了其误分类率。该方法完全是数据驱动的,对分布假设具有鲁棒性,并且对于直观可视化的目的是准确的,并且可以用于确定集群的数量并将每个观察值分配到其集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
期刊最新文献
Flexible Lévy-Based Models for Time Series of Count Data with Zero-Inflation, Overdispersion, and Heavy Tails Exponentially Generated Modified Chen Distribution with Applications to Lifetime Dataset Bayesian Estimation of the Stress-Strength Reliability Based on Generalized Order Statistics for Pareto Distribution Monitoring Changes in Clustering Solutions: A Review of Models and Applications Fitting Time Series Models to Fisheries Data to Ascertain Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1