{"title":"Flexible Lévy-Based Models for Time Series of Count Data with Zero-Inflation, Overdispersion, and Heavy Tails","authors":"Confort Kollie, Philip Ngare, B. Malenje","doi":"10.1155/2023/1780404","DOIUrl":null,"url":null,"abstract":"The explosion of time series count data with diverse characteristics and features in recent years has led to a proliferation of new analysis models and methods. Significant efforts have been devoted to achieving flexibility capable of handling complex dependence structures, capturing multiple distributional characteristics simultaneously, and addressing nonstationary patterns such as trends, seasonality, or change points. However, it remains a challenge when considering them in the context of long-range dependence. The Lévy-based modeling framework offers a promising tool to meet the requirements of modern data analysis. It enables the modeling of both short-range and long-range serial correlation structures by selecting the kernel set accordingly and accommodates various marginal distributions within the class of infinitely divisible laws. We propose an extension of the basic stationary framework to capture additional marginal properties, such as heavy-tailedness, in both short-term and long-term dependencies, as well as overdispersion and zero inflation in simultaneous modeling. Statistical inference is based on composite pairwise likelihood. The model’s flexibility is illustrated through applications to rainfall data in Guinea from 2008 to 2023, and the number of NSF funding awarded to academic institutions. The proposed model demonstrates remarkable flexibility and versatility, capable of simultaneously capturing overdispersion, zero inflation, and heavy-tailedness in count time series data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/1780404","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The explosion of time series count data with diverse characteristics and features in recent years has led to a proliferation of new analysis models and methods. Significant efforts have been devoted to achieving flexibility capable of handling complex dependence structures, capturing multiple distributional characteristics simultaneously, and addressing nonstationary patterns such as trends, seasonality, or change points. However, it remains a challenge when considering them in the context of long-range dependence. The Lévy-based modeling framework offers a promising tool to meet the requirements of modern data analysis. It enables the modeling of both short-range and long-range serial correlation structures by selecting the kernel set accordingly and accommodates various marginal distributions within the class of infinitely divisible laws. We propose an extension of the basic stationary framework to capture additional marginal properties, such as heavy-tailedness, in both short-term and long-term dependencies, as well as overdispersion and zero inflation in simultaneous modeling. Statistical inference is based on composite pairwise likelihood. The model’s flexibility is illustrated through applications to rainfall data in Guinea from 2008 to 2023, and the number of NSF funding awarded to academic institutions. The proposed model demonstrates remarkable flexibility and versatility, capable of simultaneously capturing overdispersion, zero inflation, and heavy-tailedness in count time series data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.