Identification of groundwater potential zones using geospatial techniques and analytical hierarchy process (AHP): case of the middle and high Cheliff basin, Algeria

IF 2.3 Q2 REMOTE SENSING Applied Geomatics Pub Date : 2023-11-13 DOI:10.1007/s12518-023-00536-5
Djamel Maizi, Abdelmadjid Boufekane, Gianluigi Busico
{"title":"Identification of groundwater potential zones using geospatial techniques and analytical hierarchy process (AHP): case of the middle and high Cheliff basin, Algeria","authors":"Djamel Maizi,&nbsp;Abdelmadjid Boufekane,&nbsp;Gianluigi Busico","doi":"10.1007/s12518-023-00536-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to delineate groundwater potential zones using an integrated approach of remote sensing (RS), geographical information system (GIS), and analytical hierarchy process (AHP) method in the middle and high Cheliff basin, Algeria. Multiple data such as lithology, lineament density, geomorphology, slope, soil, rainfall, drainage density, and land use/land cover were considered for delineating the groundwater potential zones. Spatially distributed maps/thematic layers of all the aforementioned parameters were created using remotely sensed data as well as ground data in a GIS environment. The assigned weights of the thematic layers and their features were then normalized by using the AHP technique. The delineated groundwater potential zones in this study area were categorized as very good, good, moderate, and poor, respectively. The results showed that the area along the Chlef River which is approximately 6% of the total study area was delineated as an area having “very good” potential for groundwater. The “good zone” delineated encompassed approximately 31% of the study area and was found in the pediment-pediplain complex zone. The moderate zones encompassed approximately 58% of the area. The “poor zones” encompassed approximately 5% of the area which included the cities of Ramka, El Hadjadj, Moussadek, and certain parts of Mekhatria. The groundwater potential zones map was compared with the actual discharge data from various wells within the study area and was found reasonable. Overall, this study provides a convenient approach of delineating the potential of groundwater availability which ultimately will aid in better planning and managing of groundwater resources.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-023-00536-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to delineate groundwater potential zones using an integrated approach of remote sensing (RS), geographical information system (GIS), and analytical hierarchy process (AHP) method in the middle and high Cheliff basin, Algeria. Multiple data such as lithology, lineament density, geomorphology, slope, soil, rainfall, drainage density, and land use/land cover were considered for delineating the groundwater potential zones. Spatially distributed maps/thematic layers of all the aforementioned parameters were created using remotely sensed data as well as ground data in a GIS environment. The assigned weights of the thematic layers and their features were then normalized by using the AHP technique. The delineated groundwater potential zones in this study area were categorized as very good, good, moderate, and poor, respectively. The results showed that the area along the Chlef River which is approximately 6% of the total study area was delineated as an area having “very good” potential for groundwater. The “good zone” delineated encompassed approximately 31% of the study area and was found in the pediment-pediplain complex zone. The moderate zones encompassed approximately 58% of the area. The “poor zones” encompassed approximately 5% of the area which included the cities of Ramka, El Hadjadj, Moussadek, and certain parts of Mekhatria. The groundwater potential zones map was compared with the actual discharge data from various wells within the study area and was found reasonable. Overall, this study provides a convenient approach of delineating the potential of groundwater availability which ultimately will aid in better planning and managing of groundwater resources.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用地理空间技术和层次分析法(AHP)确定地下水潜力带:以阿尔及利亚切里夫中高盆地为例
采用遥感、地理信息系统(GIS)和层次分析法(AHP)相结合的方法,对阿尔及利亚切里夫中高盆地地下水潜力区进行了圈定。考虑了多种数据,如岩性、地形密度、地貌、坡度、土壤、降雨、排水密度和土地利用/土地覆盖等,以划定地下水潜在带。上述所有参数的空间分布地图/专题层都是利用遥感数据以及GIS环境中的地面数据创建的。利用层次分析法对各主题层的权重及其特征进行归一化处理。圈定的研究区地下水潜力区分别为“极好”、“好”、“中等”和“差”。结果表明,Chlef河沿岸地区约占研究区总面积的6%,被划定为地下水潜力“非常好”的地区。该“良好带”约占研究区总面积的31%,主要分布在小儿科-小儿科复合带。中等地带约占该地区的58%。“贫困区”约占该地区的5%,其中包括拉姆卡、哈贾吉、穆萨德克等城市和Mekhatria的某些地区。将地下水潜势带图与研究区内各口井的实际流量数据进行对比,发现其合理性。总的来说,这项研究提供了一种描述地下水可用性潜力的方便方法,最终将有助于更好地规划和管理地下水资源。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Geomatics
Applied Geomatics REMOTE SENSING-
CiteScore
5.40
自引率
3.70%
发文量
61
期刊介绍: Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences. The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology. Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements
期刊最新文献
The effect of spatial lag on modeling geomatic covariates using analysis of variance Flood susceptibility mapping using machine learning and remote sensing data in the Southern Karun Basin, Iran Spatial assessment of groundwater potential zones using remote sensing, GIS and analytical hierarchy process: A case study of Siliguri subdivision, West Bengal Sequential Gaussian simulation for mapping the spatial variability of saturated soil hydraulic conductivity at watershed scale Geoinformatics and Analytic Hierarchy Process (AHP) in modelling groundwater potential in Obudu Plateau, Southeastern Nigeria Bamenda Massif
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1