{"title":"Lateral torsional buckling of I‐section simply supported beams with stepped height","authors":"Duy Khanh Trinh, Dinh Hoa Nguyen, Hung Cuong Bui, Minh Tuyen Nguyen","doi":"10.1002/stco.202300020","DOIUrl":null,"url":null,"abstract":"Abstract Variable cross‐section beams are widely used, especially I‐section stepped beams with variable height, which have benefits such as saving materials to match the moment diagrams, reducing the structure height, and access for technical services. However, lowering the beam height also leads to a significant decrease in lateral torsional buckling resistance. Currently, the standards do not provide calculation rules for this type of beam yet, and some studies on lateral torsional buckling of beams have only focused on those with varying flange width and thickness while keeping the beam height constant. This article introduces an approximate formula to determine the critical moment of simply supported I‐section beams when the height varies. The proposed formula is validated by comparing with finite element simulation results obtained by COMSOL Multiphysics 5.6. The evaluation shows that the formula has a low coefficient of variation and high coefficient of determination, ensuring its reliability.","PeriodicalId":54183,"journal":{"name":"Steel Construction-Design and Research","volume":"64 51","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel Construction-Design and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/stco.202300020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Variable cross‐section beams are widely used, especially I‐section stepped beams with variable height, which have benefits such as saving materials to match the moment diagrams, reducing the structure height, and access for technical services. However, lowering the beam height also leads to a significant decrease in lateral torsional buckling resistance. Currently, the standards do not provide calculation rules for this type of beam yet, and some studies on lateral torsional buckling of beams have only focused on those with varying flange width and thickness while keeping the beam height constant. This article introduces an approximate formula to determine the critical moment of simply supported I‐section beams when the height varies. The proposed formula is validated by comparing with finite element simulation results obtained by COMSOL Multiphysics 5.6. The evaluation shows that the formula has a low coefficient of variation and high coefficient of determination, ensuring its reliability.
期刊介绍:
Steel Construction publishes peerreviewed papers covering the entire field of steel construction research. In the interests of "construction without depletion", it skilfully combines steel with other forms of construction employing concrete, glass, cables and membranes to form integrated steelwork systems. Since 2010 Steel Construction is the official journal for ECCS- European Convention for Constructional Steelwork members. You will find more information about membership on the ECCS homepage. Topics include: -Design and construction of structures -Methods of analysis and calculation -Experimental and theoretical research projects and results -Composite construction -Steel buildings and bridges -Cable and membrane structures -Structural glazing -Masts and towers -Vessels, cranes and hydraulic engineering structures -Fire protection -Lightweight structures