Research on Wind Turbine Fault Diagnosis Method Realized by Vibration Monitoring

Q1 Decision Sciences Annals of Data Science Pub Date : 2023-10-10 DOI:10.1007/s40745-023-00497-x
Xiuhua Jiang
{"title":"Research on Wind Turbine Fault Diagnosis Method Realized by Vibration Monitoring","authors":"Xiuhua Jiang","doi":"10.1007/s40745-023-00497-x","DOIUrl":null,"url":null,"abstract":"<div><p>Wind energy is one of the fast evolving renewable energy sources that has seen widespread application. Therefore, research on its carrier, the wind turbine, is growing, and the majority of them concentrate on the diagnosis of wind turbine faults. In this paper, the vibration signals collected in the time domain by vibration monitoring were analyzed, and the fault characteristic parameters were identified. These parameters were then inputted into a genetic algorithm back-propagation neural network (GA-BPNN) for wind turbine fault diagnosis. It was found that the presence of defects in the wind turbine depended on the effective value, peak value, and kurtosis of the vibration signal. The overall recognition accuracy of the GA-BPNN was 94.89%, which was much higher than that of the support vector machine (88.7%) and random forest (88.35%). Therefore, it is feasible and highly accurate to extract fault characteristic parameters through vibration monitoring and input them into a GA-BPNN for wind turbine fault diagnosis.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00497-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Wind energy is one of the fast evolving renewable energy sources that has seen widespread application. Therefore, research on its carrier, the wind turbine, is growing, and the majority of them concentrate on the diagnosis of wind turbine faults. In this paper, the vibration signals collected in the time domain by vibration monitoring were analyzed, and the fault characteristic parameters were identified. These parameters were then inputted into a genetic algorithm back-propagation neural network (GA-BPNN) for wind turbine fault diagnosis. It was found that the presence of defects in the wind turbine depended on the effective value, peak value, and kurtosis of the vibration signal. The overall recognition accuracy of the GA-BPNN was 94.89%, which was much higher than that of the support vector machine (88.7%) and random forest (88.35%). Therefore, it is feasible and highly accurate to extract fault characteristic parameters through vibration monitoring and input them into a GA-BPNN for wind turbine fault diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过振动监测实现风力涡轮机故障诊断方法研究
风能是快速发展的可再生能源之一,已得到广泛应用。因此,对其载体--风力发电机的研究也日益增多,其中大部分研究集中在风力发电机的故障诊断上。本文分析了通过振动监测收集到的时域振动信号,并确定了故障特征参数。然后将这些参数输入用于风力发电机故障诊断的遗传算法反向传播神经网络(GA-BPNN)。研究发现,风力发电机是否存在缺陷取决于振动信号的有效值、峰值和峰度。GA-BPNN 的总体识别准确率为 94.89%,远高于支持向量机(88.7%)和随机森林(88.35%)。因此,通过振动监测提取故障特征参数并输入 GA-BPNN 进行风力发电机组故障诊断是可行的,且准确率较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
期刊最新文献
Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis Kernel Method for Estimating Matusita Overlapping Coefficient Using Numerical Approximations Maximum Likelihood Estimation for Generalized Inflated Power Series Distributions Farm-Level Smart Crop Recommendation Framework Using Machine Learning Reaction Function for Financial Market Reacting to Events or Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1