Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis

Q1 Decision Sciences Annals of Data Science Pub Date : 2024-08-10 DOI:10.1007/s40745-024-00570-z
Shengkun Xie, Chong Gan, Anna T. Lawniczak
{"title":"Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis","authors":"Shengkun Xie,&nbsp;Chong Gan,&nbsp;Anna T. Lawniczak","doi":"10.1007/s40745-024-00570-z","DOIUrl":null,"url":null,"abstract":"<div><p>Developing effective methodologies for territory design and relativity estimation is crucial in auto insurance rate filings and reviews. This study introduces a novel approach utilizing fuzzy clustering to enhance the design process of territories for auto insurance rate-making and regulation. By adopting a soft clustering method, we aim to overcome the limitations of traditional hard clustering techniques and improve the assessment of territory risk. Furthermore, we employ non-negative sparse matrix approximation techniques to refine the estimates of risk relativities for basic rating units. This method promotes sparsity in the fuzzy membership matrix by eliminating small membership values, leading to more robust and interpretable results. We also compare the outcomes with those obtained using non-negative sparse principal component analysis, a technique explored in our previous research. Integrating fuzzy clustering with non-negative sparse matrix decomposition offers a promising approach for auto insurance rate filings. The combined methodology enhances decision-making and provides sparse estimates, which can be advantageous in various data science applications where fuzzy clustering is relevant.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 1","pages":"307 - 340"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00570-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Developing effective methodologies for territory design and relativity estimation is crucial in auto insurance rate filings and reviews. This study introduces a novel approach utilizing fuzzy clustering to enhance the design process of territories for auto insurance rate-making and regulation. By adopting a soft clustering method, we aim to overcome the limitations of traditional hard clustering techniques and improve the assessment of territory risk. Furthermore, we employ non-negative sparse matrix approximation techniques to refine the estimates of risk relativities for basic rating units. This method promotes sparsity in the fuzzy membership matrix by eliminating small membership values, leading to more robust and interpretable results. We also compare the outcomes with those obtained using non-negative sparse principal component analysis, a technique explored in our previous research. Integrating fuzzy clustering with non-negative sparse matrix decomposition offers a promising approach for auto insurance rate filings. The combined methodology enhances decision-making and provides sparse estimates, which can be advantageous in various data science applications where fuzzy clustering is relevant.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于领土风险软聚类分析的非负稀疏矩阵因式分解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
期刊最新文献
Identifying the Intents Behind Website Visits by Employing Unsupervised Machine Learning Models A Novel Finite Mixture Model Based on the Generalized t Distributions with Two-Sided Censored Data Gated Graph Attention-based Crossover Snake (GGA-CS) Algorithm for Hyperspectral Image Classification Kernel-free Reduced Quadratic Surface Support Vector Machine with 0-1 Loss Function and L\(_p\)-norm Regularization Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1