Probabilistic Forecasting of Bus Travel Time with a Bayesian Gaussian Mixture Model

IF 4.4 2区 工程技术 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Transportation Science Pub Date : 2023-10-10 DOI:10.1287/trsc.2022.0214
Xiaoxu Chen, Zhanhong Cheng, Jian Gang Jin, Martin Trépanier, Lijun Sun
{"title":"Probabilistic Forecasting of Bus Travel Time with a Bayesian Gaussian Mixture Model","authors":"Xiaoxu Chen, Zhanhong Cheng, Jian Gang Jin, Martin Trépanier, Lijun Sun","doi":"10.1287/trsc.2022.0214","DOIUrl":null,"url":null,"abstract":"Accurate forecasting of bus travel time and its uncertainty is critical to service quality and operation of transit systems: it can help passengers make informed decisions on departure time, route choice, and even transport mode choice, and it also support transit operators on tasks such as crew/vehicle scheduling and timetabling. However, most existing approaches in bus travel time forecasting are based on deterministic models that provide only point estimation. To this end, we develop in this paper a Bayesian probabilistic model for forecasting bus travel time and estimated time of arrival (ETA). To characterize the strong dependencies/interactions between consecutive buses, we concatenate the link travel time vectors and the headway vector from a pair of two adjacent buses as a new augmented variable and model it with a mixture of constrained multivariate Gaussian distributions. This approach can naturally capture the interactions between adjacent buses (e.g., correlated speed and smooth variation of headway), handle missing values in data, and depict the multimodality in bus travel time distributions. Next, we assume different periods in a day share the same set of Gaussian components, and we use time-varying mixing coefficients to characterize the systematic temporal variations in bus operation. For model inference, we develop an efficient Markov chain Monte Carlo (MCMC) algorithm to obtain the posterior distributions of model parameters and make probabilistic forecasting. We test the proposed model using the data from two bus lines in Guangzhou, China. Results show that our approach significantly outperforms baseline models that overlook bus-to-bus interactions, in terms of both predictive means and distributions. Besides forecasting, the parameters of the proposed model contain rich information for understanding/improving the bus service, for example, analyzing link travel time and headway correlation using covariance matrices and understanding time-varying patterns of bus fleet operation from the mixing coefficients. Funding: This research is supported in part by the Fonds de Recherche du Quebec-Societe et Culture (FRQSC) under the NSFC-FRQSC Research Program on Smart Cities and Big Data, the Canadian Statistical Sciences Institute (CANSSI) Collaborative Research Teams grants, and the Natural Sciences and Engineering Research Council (NSERC) of Canada. X. Chen acknowledges funding support from the China Scholarship Council (CSC). Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2022.0214 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"120 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2022.0214","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate forecasting of bus travel time and its uncertainty is critical to service quality and operation of transit systems: it can help passengers make informed decisions on departure time, route choice, and even transport mode choice, and it also support transit operators on tasks such as crew/vehicle scheduling and timetabling. However, most existing approaches in bus travel time forecasting are based on deterministic models that provide only point estimation. To this end, we develop in this paper a Bayesian probabilistic model for forecasting bus travel time and estimated time of arrival (ETA). To characterize the strong dependencies/interactions between consecutive buses, we concatenate the link travel time vectors and the headway vector from a pair of two adjacent buses as a new augmented variable and model it with a mixture of constrained multivariate Gaussian distributions. This approach can naturally capture the interactions between adjacent buses (e.g., correlated speed and smooth variation of headway), handle missing values in data, and depict the multimodality in bus travel time distributions. Next, we assume different periods in a day share the same set of Gaussian components, and we use time-varying mixing coefficients to characterize the systematic temporal variations in bus operation. For model inference, we develop an efficient Markov chain Monte Carlo (MCMC) algorithm to obtain the posterior distributions of model parameters and make probabilistic forecasting. We test the proposed model using the data from two bus lines in Guangzhou, China. Results show that our approach significantly outperforms baseline models that overlook bus-to-bus interactions, in terms of both predictive means and distributions. Besides forecasting, the parameters of the proposed model contain rich information for understanding/improving the bus service, for example, analyzing link travel time and headway correlation using covariance matrices and understanding time-varying patterns of bus fleet operation from the mixing coefficients. Funding: This research is supported in part by the Fonds de Recherche du Quebec-Societe et Culture (FRQSC) under the NSFC-FRQSC Research Program on Smart Cities and Big Data, the Canadian Statistical Sciences Institute (CANSSI) Collaborative Research Teams grants, and the Natural Sciences and Engineering Research Council (NSERC) of Canada. X. Chen acknowledges funding support from the China Scholarship Council (CSC). Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2022.0214 .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯-高斯混合模型的公交出行时间概率预测
公交出行时间及其不确定性的准确预测对公交系统的服务质量和运营至关重要:它可以帮助乘客在出发时间、路线选择甚至运输方式选择方面做出明智的决策,还可以支持公交运营商完成人员/车辆调度和时间表等任务。然而,现有的公交出行时间预测方法大多是基于只提供点估计的确定性模型。为此,本文建立了一个贝叶斯概率模型来预测公交出行时间和预计到达时间(ETA)。为了描述连续公交车之间的强依赖/相互作用,我们将来自一对相邻公交车的路段行驶时间向量和车头时距向量连接为一个新的增广变量,并使用约束多元高斯分布的混合模型对其进行建模。这种方法可以自然地捕捉相邻公交车之间的相互作用(例如,相关速度和车头时距的平滑变化),处理数据中的缺失值,并描述公交车行驶时间分布的多模态。接下来,我们假设一天中的不同时段共享同一组高斯分量,并使用时变混合系数来表征总线运行中的系统时间变化。在模型推理方面,我们开发了一种高效的马尔可夫链蒙特卡罗(MCMC)算法来获得模型参数的后验分布并进行概率预测。我们使用中国广州两条公交线路的数据来测试所提出的模型。结果表明,我们的方法在预测均值和分布方面都明显优于忽略总线到总线交互的基线模型。除了预测外,该模型的参数还包含丰富的信息,如利用协方差矩阵分析线路行程时间和车头时距的相关性,以及从混合系数中理解公交车队运行的时变模式。资助:本研究得到了魁北克文化研究基金会(FRQSC)智慧城市和大数据研究项目、加拿大统计科学研究所(CANSSI)合作研究团队以及加拿大自然科学与工程研究委员会(NSERC)的部分支持。Chen X.感谢中国国家留学基金委(CSC)的资助。补充材料:电子伴侣可在https://doi.org/10.1287/trsc.2022.0214上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportation Science
Transportation Science 工程技术-运筹学与管理科学
CiteScore
8.30
自引率
10.90%
发文量
111
审稿时长
12 months
期刊介绍: Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services. Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.
期刊最新文献
CARMA: Fair and Efficient Bottleneck Congestion Management via Nontradable Karma Credits Genetic Algorithms with Neural Cost Predictor for Solving Hierarchical Vehicle Routing Problems On-Demand Meal Delivery: A Markov Model for Circulating Couriers Physics-Informed Machine Learning for Calibrating Macroscopic Traffic Flow Models Heatmap Design for Probabilistic Driver Repositioning in Crowdsourced Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1