Random utility and limited consideration

IF 1.9 3区 经济学 Q2 ECONOMICS Quantitative Economics Pub Date : 2023-01-01 DOI:10.3982/qe1861
Victor H. Aguiar, Maria Jose Boccardi, Nail Kashaev, Jeongbin Kim
{"title":"Random utility and limited consideration","authors":"Victor H. Aguiar, Maria Jose Boccardi, Nail Kashaev, Jeongbin Kim","doi":"10.3982/qe1861","DOIUrl":null,"url":null,"abstract":"The random utility model (RUM, McFadden and Richter (1990)) has been the standard tool to describe the behavior of a population of decision makers. RUM assumes that decision makers behave as if they maximize a rational preference over a choice set. This assumption may fail when consideration of all alternatives is costly. We provide a theoretical and statistical framework that unifies well‐known models of random (limited) consideration and generalizes them to allow for preference heterogeneity. We apply this methodology in a novel stochastic choice data set that we collected in a large‐scale online experiment. Our data set is unique since it exhibits both choice set and (attention) frame variation. We run a statistical survival race between competing models of random consideration and RUM. We find that RUM cannot explain the population behavior. In contrast, we cannot reject the hypothesis that decision makers behave according to the logit attention model (Brady and Rehbeck (2016)).","PeriodicalId":46811,"journal":{"name":"Quantitative Economics","volume":"74 3 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3982/qe1861","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

Abstract

The random utility model (RUM, McFadden and Richter (1990)) has been the standard tool to describe the behavior of a population of decision makers. RUM assumes that decision makers behave as if they maximize a rational preference over a choice set. This assumption may fail when consideration of all alternatives is costly. We provide a theoretical and statistical framework that unifies well‐known models of random (limited) consideration and generalizes them to allow for preference heterogeneity. We apply this methodology in a novel stochastic choice data set that we collected in a large‐scale online experiment. Our data set is unique since it exhibits both choice set and (attention) frame variation. We run a statistical survival race between competing models of random consideration and RUM. We find that RUM cannot explain the population behavior. In contrast, we cannot reject the hypothesis that decision makers behave according to the logit attention model (Brady and Rehbeck (2016)).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机效用和有限考虑
随机实用新型(RUM, McFadden and Richter, 1990)已经成为描述决策者群体行为的标准工具。RUM假设决策者的行为就好像他们在一个选择集上最大化了一个理性偏好。当考虑所有替代方案的成本很高时,这种假设可能会失败。我们提供了一个理论和统计框架,统一了众所周知的随机(有限)考虑模型,并对它们进行了推广,以允许偏好异质性。我们将这种方法应用于我们在大规模在线实验中收集的一个新的随机选择数据集。我们的数据集是独一无二的,因为它显示了选择集和(注意)框架的变化。我们在随机考虑模型和随机概率模型之间进行了一场统计上的生存竞赛。我们发现RUM不能解释种群行为。相比之下,我们不能拒绝决策者根据logit注意模型行事的假设(Brady and Rehbeck(2016))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
5.60%
发文量
28
审稿时长
52 weeks
期刊最新文献
Geometric methods for finite rational inattention Measuring trust in institutions and its causal effect A robust permutation test for subvector inference in linear regressions Difficulties in testing for capital overaccumulation Bootstrapping Laplace transforms of volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1