{"title":"Self-Supervised Learning-Based General Laboratory Progress Pretrained Model for Cardiovascular Event Detection","authors":"Li-Chin Chen;Kuo-Hsuan Hung;Yi-Ju Tseng;Hsin-Yao Wang;Tse-Min Lu;Wei-Chieh Huang;Yu Tsao","doi":"10.1109/JTEHM.2023.3307794","DOIUrl":null,"url":null,"abstract":"Objective: Leveraging patient data through machine learning techniques in disease care offers a multitude of substantial benefits. Nonetheless, the inherent nature of patient data poses several challenges. Prevalent cases amass substantial longitudinal data owing to their patient volume and consistent follow-ups, however, longitudinal laboratory data are renowned for their irregularity, temporality, absenteeism, and sparsity; In contrast, recruitment for rare or specific cases is often constrained due to their limited patient size and episodic observations. This study employed self-supervised learning (SSL) to pretrain a generalized laboratory progress (GLP) model that captures the overall progression of six common laboratory markers in prevalent cardiovascular cases, with the intention of transferring this knowledge to aid in the detection of specific cardiovascular event. Methods and procedures: GLP implemented a two-stage training approach, leveraging the information embedded within interpolated data and amplify the performance of SSL. After GLP pretraining, it is transferred for target vessel revascularization (TVR) detection. Results: The proposed two-stage training improved the performance of pure SSL, and the transferability of GLP exhibited distinctiveness. After GLP processing, the classification exhibited a notable enhancement, with averaged accuracy rising from 0.63 to 0.90. All evaluated metrics demonstrated substantial superiority ( ${p} < 0.01$ ) compared to prior GLP processing. Conclusion: Our study effectively engages in translational engineering by transferring patient progression of cardiovascular laboratory parameters from one patient group to another, transcending the limitations of data availability. The transferability of disease progression optimized the strategies of examinations and treatments, and improves patient prognosis while using commonly available laboratory parameters. The potential for expanding this approach to encompass other diseases holds great promise. Clinical impact: Our study effectively transposes patient progression from one cohort to another, surpassing the constraints of episodic observation. The transferability of disease progression contributed to cardiovascular event assessment.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"43 - 55"},"PeriodicalIF":3.7000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10227304","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10227304/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Leveraging patient data through machine learning techniques in disease care offers a multitude of substantial benefits. Nonetheless, the inherent nature of patient data poses several challenges. Prevalent cases amass substantial longitudinal data owing to their patient volume and consistent follow-ups, however, longitudinal laboratory data are renowned for their irregularity, temporality, absenteeism, and sparsity; In contrast, recruitment for rare or specific cases is often constrained due to their limited patient size and episodic observations. This study employed self-supervised learning (SSL) to pretrain a generalized laboratory progress (GLP) model that captures the overall progression of six common laboratory markers in prevalent cardiovascular cases, with the intention of transferring this knowledge to aid in the detection of specific cardiovascular event. Methods and procedures: GLP implemented a two-stage training approach, leveraging the information embedded within interpolated data and amplify the performance of SSL. After GLP pretraining, it is transferred for target vessel revascularization (TVR) detection. Results: The proposed two-stage training improved the performance of pure SSL, and the transferability of GLP exhibited distinctiveness. After GLP processing, the classification exhibited a notable enhancement, with averaged accuracy rising from 0.63 to 0.90. All evaluated metrics demonstrated substantial superiority ( ${p} < 0.01$ ) compared to prior GLP processing. Conclusion: Our study effectively engages in translational engineering by transferring patient progression of cardiovascular laboratory parameters from one patient group to another, transcending the limitations of data availability. The transferability of disease progression optimized the strategies of examinations and treatments, and improves patient prognosis while using commonly available laboratory parameters. The potential for expanding this approach to encompass other diseases holds great promise. Clinical impact: Our study effectively transposes patient progression from one cohort to another, surpassing the constraints of episodic observation. The transferability of disease progression contributed to cardiovascular event assessment.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.