Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2024-08-01 DOI:10.3866/PKU.WHXB202308036
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li
{"title":"Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction","authors":"Linfeng Xiao ,&nbsp;Wanlu Ren ,&nbsp;Shishi Shen ,&nbsp;Mengshan Chen ,&nbsp;Runhua Liao ,&nbsp;Yingtang Zhou ,&nbsp;Xibao Li","doi":"10.3866/PKU.WHXB202308036","DOIUrl":null,"url":null,"abstract":"<div><h3>Abstract</h3><div>The production of renewable fuels through water splitting <em>via</em> photocatalytic hydrogen production holds significant promise. Nonetheless, the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on photocatalysts present notable challenges. In this study, we have devised a straightforward hydrothermal method to synthesize Bi<sub>2</sub>O<sub>3</sub> (BO) derived from metal‐organic frameworks (MOFs), loaded with flower-like ZnIn<sub>2</sub>S<sub>4</sub> (ZIS). This approach substantially enhances water adsorption and surface catalytic reactions, resulting in a remarkable enhancement of photocatalytic activity. By employing triethanolamine (TEOA) as a sacrificial agent, the hydrogen evolution rate achieved with 15% (mass fraction) ZIS loading on BO reached an impressive value of 1610 μmol·h<sup>−1</sup>·g<sup>−1</sup>, marking a 6.34-fold increase compared to that observed for bare BO. Furthermore, through density functional theory (DFT) and <em>ab initio</em> molecular dynamics (AIMD) calculations, we have identified the reactions occurring at the ZIS/BO S-scheme heterojunction interface, including the identification of active sites for water adsorption and catalytic reactions. This study provides valuable insights into the development of high-performance composite photocatalytic materials with tailored electronic properties and wettability.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 8","pages":"Article 2308036"},"PeriodicalIF":10.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824001206","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise. Nonetheless, the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on photocatalysts present notable challenges. In this study, we have devised a straightforward hydrothermal method to synthesize Bi2O3 (BO) derived from metal‐organic frameworks (MOFs), loaded with flower-like ZnIn2S4 (ZIS). This approach substantially enhances water adsorption and surface catalytic reactions, resulting in a remarkable enhancement of photocatalytic activity. By employing triethanolamine (TEOA) as a sacrificial agent, the hydrogen evolution rate achieved with 15% (mass fraction) ZIS loading on BO reached an impressive value of 1610 μmol·h−1·g−1, marking a 6.34-fold increase compared to that observed for bare BO. Furthermore, through density functional theory (DFT) and ab initio molecular dynamics (AIMD) calculations, we have identified the reactions occurring at the ZIS/BO S-scheme heterojunction interface, including the identification of active sites for water adsorption and catalytic reactions. This study provides valuable insights into the development of high-performance composite photocatalytic materials with tailored electronic properties and wettability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过调整ZnIn<sub>2</sub>S<sub>4</sub>/Bi<sub>2</sub>O<sub>3</sub>S-Scheme异质结
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Experimental and theoretical investigations of solvent polarity effect on ESIPT mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone Recent advances of functional nanomaterials for screen-printed photoelectrochemical biosensors Engineering multiple optimization strategy on bismuth oxyhalide photoactive materials for efficient photoelectrochemical applications Machine learning enables the prediction of amide bond synthesis based on small datasets Noise reduction of nuclear magnetic resonance spectroscopy using lightweight deep neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1