{"title":"Scalable, Time-of-Flight and Depth-of-Interaction Detector Units for High-Resolution PET Systems","authors":"Vanessa Nadig;Stefan Gundacker;David Schug;Katrin Herweg;Konstantin Weindel;Harald Radermacher;Florian Mueller;Bjoern Weissler;Volkmar Schulz","doi":"10.1109/TRPMS.2023.3324197","DOIUrl":null,"url":null,"abstract":"Resolving the depth of interaction (DOI) of a \n<inline-formula> <tex-math>$\\gamma $ </tex-math></inline-formula>\n-photon in the scintillator is necessary to correct for parallax errors in organ-dedicated and large-scale time-of-flight positron emission tomography (TOF-PET) scanners or enable the precise recovery of Compton-scattered \n<inline-formula> <tex-math>$\\gamma $ </tex-math></inline-formula>\n-photons. Doubling the number of readout channels and moving toward more complex detector designs are methods to encode DOI, often associated with high costs. We propose a DOI-capable TOF-PET detector unit concept confining light-sharing to two detector channels, where the high benefit lies in scalability and the prospect of Compton recovery between adjacent units. We evaluate these scalable, DOI-capable unit concepts, realizing DOI encoding between two LYSO:Ce,Ca crystals (\n<inline-formula> <tex-math>$3 \\times 3 \\times 20$ </tex-math></inline-formula>\n mm3; Taiwan Applied Crystals) one-to-one coupled to two Broadcom AFBR-S4N33C013 silicon-photomultipliers (SiPMs) read out with the TOFPET2 ASIC. The best-performing unit employing a triangular reflector sheet and optical glue between the two crystals and mounted on two FBK NUV-MT SiPMs results in a DOI resolution of about 3 mm (RMSE) based on the energy ratio digitized by the two channels while maintaining a coincidence time resolution (CTR) of 226 ps (FWHM) with TOFPET2 ASIC readout, applying a linear DOI correction. Using HF readout, the CTR of the proposed detector unit was improved to 141 ps (FWHM).","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10285456","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10285456/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Resolving the depth of interaction (DOI) of a
$\gamma $
-photon in the scintillator is necessary to correct for parallax errors in organ-dedicated and large-scale time-of-flight positron emission tomography (TOF-PET) scanners or enable the precise recovery of Compton-scattered
$\gamma $
-photons. Doubling the number of readout channels and moving toward more complex detector designs are methods to encode DOI, often associated with high costs. We propose a DOI-capable TOF-PET detector unit concept confining light-sharing to two detector channels, where the high benefit lies in scalability and the prospect of Compton recovery between adjacent units. We evaluate these scalable, DOI-capable unit concepts, realizing DOI encoding between two LYSO:Ce,Ca crystals (
$3 \times 3 \times 20$
mm3; Taiwan Applied Crystals) one-to-one coupled to two Broadcom AFBR-S4N33C013 silicon-photomultipliers (SiPMs) read out with the TOFPET2 ASIC. The best-performing unit employing a triangular reflector sheet and optical glue between the two crystals and mounted on two FBK NUV-MT SiPMs results in a DOI resolution of about 3 mm (RMSE) based on the energy ratio digitized by the two channels while maintaining a coincidence time resolution (CTR) of 226 ps (FWHM) with TOFPET2 ASIC readout, applying a linear DOI correction. Using HF readout, the CTR of the proposed detector unit was improved to 141 ps (FWHM).