首页 > 最新文献

IEEE Transactions on Radiation and Plasma Medical Sciences最新文献

英文 中文
IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-04 DOI: 10.1109/TRPMS.2025.3530624
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors","authors":"","doi":"10.1109/TRPMS.2025.3530624","DOIUrl":"https://doi.org/10.1109/TRPMS.2025.3530624","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 2","pages":"C2-C2"},"PeriodicalIF":4.6,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870458","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-04 DOI: 10.1109/TRPMS.2025.3530622
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information","authors":"","doi":"10.1109/TRPMS.2025.3530622","DOIUrl":"https://doi.org/10.1109/TRPMS.2025.3530622","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 2","pages":"C3-C3"},"PeriodicalIF":4.6,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870459","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors IEEE辐射与等离子体医学科学汇刊作者信息
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-01-02 DOI: 10.1109/TRPMS.2024.3519397
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors","authors":"","doi":"10.1109/TRPMS.2024.3519397","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3519397","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 1","pages":"C2-C2"},"PeriodicalIF":4.6,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820139","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information IEEE辐射与等离子体医学科学汇刊信息
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-01-02 DOI: 10.1109/TRPMS.2024.3519395
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information","authors":"","doi":"10.1109/TRPMS.2024.3519395","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3519395","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 1","pages":"C3-C3"},"PeriodicalIF":4.6,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Transactions on Radiation and Plasma Medical Sciences Vol. 8 2024 Index IEEE Transactions on Radiation and Plasma Medical Sciences Vol.
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-25 DOI: 10.1109/TRPMS.2024.3483528
{"title":"2024 Index IEEE Transactions on Radiation and Plasma Medical Sciences Vol. 8","authors":"","doi":"10.1109/TRPMS.2024.3483528","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3483528","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 8","pages":"1-20"},"PeriodicalIF":4.6,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10766874","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information 电气和电子工程师学会辐射与等离子体医学科学杂志》(IEEE Transactions on Radiation and Plasma Medical Sciences)出版信息
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-05 DOI: 10.1109/TRPMS.2024.3475531
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information","authors":"","doi":"10.1109/TRPMS.2024.3475531","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3475531","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 8","pages":"C3-C3"},"PeriodicalIF":4.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10744627","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors 电气和电子工程师学会《辐射与等离子体医学科学杂志》作者须知
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-05 DOI: 10.1109/TRPMS.2024.3475533
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors","authors":"","doi":"10.1109/TRPMS.2024.3475533","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3475533","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 8","pages":"C2-C2"},"PeriodicalIF":4.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10744626","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward a Second Generation of Metascintillators Using the Purcell Effect
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-10-03 DOI: 10.1109/TRPMS.2024.3471251
A. Shultzman;R. Schütz;Y. Kurman;N. Lahav;G. Dosovitskiy;C. Roques-Carmes;Y. Bekenstein;G. Konstantinou;R. Latella;L. Zhang;F. Loignon-Houle;A. J. Gonzalez;J. M. Benlloch;I. Kaminer;P. Lecoq
This study focuses on advancing metascintillators to break the 100 ps barrier and approach the 10 ps target. We exploitnanophotonic features, specifically the Purcell effect, to shape and enhance the scintillation properties of the first-generation metascintillator. We demonstrate that a faster emission is achievable along with a more efficient conversionefficiency. This results in a coincidence time resolution improved by a factor of 1.3, crucial for TOF-PET applications.
{"title":"Toward a Second Generation of Metascintillators Using the Purcell Effect","authors":"A. Shultzman;R. Schütz;Y. Kurman;N. Lahav;G. Dosovitskiy;C. Roques-Carmes;Y. Bekenstein;G. Konstantinou;R. Latella;L. Zhang;F. Loignon-Houle;A. J. Gonzalez;J. M. Benlloch;I. Kaminer;P. Lecoq","doi":"10.1109/TRPMS.2024.3471251","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3471251","url":null,"abstract":"This study focuses on advancing metascintillators to break the 100 ps barrier and approach the 10 ps target. We exploitnanophotonic features, specifically the Purcell effect, to shape and enhance the scintillation properties of the first-generation metascintillator. We demonstrate that a faster emission is achievable along with a more efficient conversionefficiency. This results in a coincidence time resolution improved by a factor of 1.3, crucial for TOF-PET applications.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 2","pages":"141-147"},"PeriodicalIF":4.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704688","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PrideDiff: Physics-Regularized Generalized Diffusion Model for CT Reconstruction
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-10-01 DOI: 10.1109/TRPMS.2024.3471677
Zexin Lu;Qi Gao;Tao Wang;Ziyuan Yang;Zhiwen Wang;Hui Yu;Hu Chen;Jiliu Zhou;Hongming Shan;Yi Zhang
Achieving a lower radiation dose and a faster imaging speed is a pivotal objective of computed tomography (CT) reconstruction. However, these often come at the cost of compromised reconstruction quality. With the advent of deep learning, numerous CT reconstruction methods rooted in this field have significantly improved the reconstruction performance. Recently, diffusion models have further enhanced training stability and imaging quality for CT. However, many of these methods only focus on CT image domain features, ignoring the intrinsic physical information of the imaging process. Although compressive sensing-based iterative reconstruction algorithms utilize physical prior information, their intricate iterative process poses challenges in training, subsequently influencing their efficiency. Motivated by these observations, we introduce a novel physics-regularized generalized diffusion model for CT reconstruction (PrideDiff). On the one hand, our method further improves the quality of reconstructed images by fusing physics-regularized iterative reconstruction methods with diffusion models. On the other hand, we propose a prior extraction module embedded with temporal features, which effectively improves the performance of the iteration process. Extensive experimental results demonstrate that PrideDiff outperforms several state-of-the-art methods in low-dose and sparse-view CT reconstruction tasks on different datasets, with faster reconstruction speed. We further discuss the effectiveness of relevant components in PrideDiff and validate the stability of the iterative reconstruction process, followed by detailed analysis of computational cost and inference time.
{"title":"PrideDiff: Physics-Regularized Generalized Diffusion Model for CT Reconstruction","authors":"Zexin Lu;Qi Gao;Tao Wang;Ziyuan Yang;Zhiwen Wang;Hui Yu;Hu Chen;Jiliu Zhou;Hongming Shan;Yi Zhang","doi":"10.1109/TRPMS.2024.3471677","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3471677","url":null,"abstract":"Achieving a lower radiation dose and a faster imaging speed is a pivotal objective of computed tomography (CT) reconstruction. However, these often come at the cost of compromised reconstruction quality. With the advent of deep learning, numerous CT reconstruction methods rooted in this field have significantly improved the reconstruction performance. Recently, diffusion models have further enhanced training stability and imaging quality for CT. However, many of these methods only focus on CT image domain features, ignoring the intrinsic physical information of the imaging process. Although compressive sensing-based iterative reconstruction algorithms utilize physical prior information, their intricate iterative process poses challenges in training, subsequently influencing their efficiency. Motivated by these observations, we introduce a novel physics-regularized generalized diffusion model for CT reconstruction (PrideDiff). On the one hand, our method further improves the quality of reconstructed images by fusing physics-regularized iterative reconstruction methods with diffusion models. On the other hand, we propose a prior extraction module embedded with temporal features, which effectively improves the performance of the iteration process. Extensive experimental results demonstrate that PrideDiff outperforms several state-of-the-art methods in low-dose and sparse-view CT reconstruction tasks on different datasets, with faster reconstruction speed. We further discuss the effectiveness of relevant components in PrideDiff and validate the stability of the iterative reconstruction process, followed by detailed analysis of computational cost and inference time.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 2","pages":"157-168"},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10701005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Gamma Imaging in Nuclear Medicine: A Review 核医学中的三伽马成像:综述
IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-09-30 DOI: 10.1109/TRPMS.2024.3470836
Hideaki Tashima;Taiga Yamaya
Three-gamma imaging is attracting attention as a futuristic diagnostic imaging method that surpasses positron emission tomography (PET). Its conceptual key is using $beta ^{+}$ - $gamma $ nuclides that simultaneously emit a prompt gamma ray with the positron decay. In this review, we have categorized the utilizations of prompt gamma rays into three categories: 1) multiple positron emitter imaging; 2) reconstruction-less positron emission imaging; and 3) positronium lifetime imaging. Multiple positron emitter imaging utilizes the prompt gamma ray as a trigger to discriminate from signals of pure positron emitters to enable simultaneous injection and imaging of two different radioisotopes. Reconstruction-less positron emission imaging combines PET and Compton imaging technologies to estimate the source position as almost a point for each triple coincidence event. Positronium lifetime imaging utilizes the prompt gamma ray as a starting signal to measure the time difference between positronium formation and annihilation for each triple coincidence event as its lifetime. This is because the positronium lifetime is affected by the surrounding microenvironment of electrons, it is expected to provide new information regarding biological conditions, such as the hypoxia state. In this review we introduce the principles of the three categories of three-gamma imaging methods, prototype development, and demonstration experiments.
作为一种超越正电子发射断层扫描(PET)的未来诊断成像方法,三伽马成像技术备受关注。它的概念关键在于使用与正电子衰变同时发射瞬发伽马射线的$beta ^{+}$ - $gamma $核素。在本综述中,我们将瞬发伽马射线的利用分为三类:1) 多正电子发射器成像;2) 无重建正电子发射成像;3) 正电子寿命成像。多正电子发射器成像利用瞬发伽马射线作为触发器,以区分纯正电子发射器的信号,从而实现两种不同放射性同位素的同时注入和成像。无重建正电子发射成像技术结合了正电子发射计算机断层显像和康普顿成像技术,可将每个三重巧合事件的源位置估计为几乎一个点。正电子寿命成像利用瞬发伽马射线作为起始信号,测量每个三重巧合事件的正电子形成和湮灭之间的时间差,作为其寿命。这是因为正电子寿命受周围电子微环境的影响,因此有望提供有关缺氧状态等生物条件的新信息。在这篇综述中,我们将介绍三伽马成像方法的原理、原型开发和演示实验。
{"title":"Three-Gamma Imaging in Nuclear Medicine: A Review","authors":"Hideaki Tashima;Taiga Yamaya","doi":"10.1109/TRPMS.2024.3470836","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3470836","url":null,"abstract":"Three-gamma imaging is attracting attention as a futuristic diagnostic imaging method that surpasses positron emission tomography (PET). Its conceptual key is using \u0000<inline-formula> <tex-math>$beta ^{+}$ </tex-math></inline-formula>\u0000-\u0000<inline-formula> <tex-math>$gamma $ </tex-math></inline-formula>\u0000 nuclides that simultaneously emit a prompt gamma ray with the positron decay. In this review, we have categorized the utilizations of prompt gamma rays into three categories: 1) multiple positron emitter imaging; 2) reconstruction-less positron emission imaging; and 3) positronium lifetime imaging. Multiple positron emitter imaging utilizes the prompt gamma ray as a trigger to discriminate from signals of pure positron emitters to enable simultaneous injection and imaging of two different radioisotopes. Reconstruction-less positron emission imaging combines PET and Compton imaging technologies to estimate the source position as almost a point for each triple coincidence event. Positronium lifetime imaging utilizes the prompt gamma ray as a starting signal to measure the time difference between positronium formation and annihilation for each triple coincidence event as its lifetime. This is because the positronium lifetime is affected by the surrounding microenvironment of electrons, it is expected to provide new information regarding biological conditions, such as the hypoxia state. In this review we introduce the principles of the three categories of three-gamma imaging methods, prototype development, and demonstration experiments.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 8","pages":"853-866"},"PeriodicalIF":4.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700810","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1