Differential-to-Common-Mode Noise Conversion Suppression on Right-Angle-Bent Differential Transmission Lines Using 3D-Printed Dielectric Materials

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of RF and Microwave Computer-Aided Engineering Pub Date : 2023-09-20 DOI:10.1155/2023/1130129
Ook Chung, Hogeun Yoo, Suhyoun Song, Jaehoon Lee
{"title":"Differential-to-Common-Mode Noise Conversion Suppression on Right-Angle-Bent Differential Transmission Lines Using 3D-Printed Dielectric Materials","authors":"Ook Chung, Hogeun Yoo, Suhyoun Song, Jaehoon Lee","doi":"10.1155/2023/1130129","DOIUrl":null,"url":null,"abstract":"A method using 3D-printed dielectric materials is proposed to suppress differential-to-common-mode noise conversion in right-angle-bent differential transmission lines. The permittivity of the 3D-printed dielectric material decreases the phase velocity of the shorter inner line of the differential transmission lines. Decreasing the phase velocity of the inner line enables the transmission line phase difference to approach 180°, suppressing differential-to-common-mode noise conversion. Simulation shows that increasing the length of the dielectric material causes a decrease in the phase velocity of the transmission line, suppressing differential-to-common-mode noise. The measured results agree with the simulation, indicating suppression in Scd21. The eye height of the eye diagram improved by 19.63%, improving the system signal integrity.","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/1130129","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A method using 3D-printed dielectric materials is proposed to suppress differential-to-common-mode noise conversion in right-angle-bent differential transmission lines. The permittivity of the 3D-printed dielectric material decreases the phase velocity of the shorter inner line of the differential transmission lines. Decreasing the phase velocity of the inner line enables the transmission line phase difference to approach 180°, suppressing differential-to-common-mode noise conversion. Simulation shows that increasing the length of the dielectric material causes a decrease in the phase velocity of the transmission line, suppressing differential-to-common-mode noise. The measured results agree with the simulation, indicating suppression in Scd21. The eye height of the eye diagram improved by 19.63%, improving the system signal integrity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用3d打印介质材料抑制直角弯曲差分传输线的差共模噪声转换
提出了一种利用3d打印介质材料抑制直角弯曲差动传输线中差共模噪声转换的方法。3d打印介质材料的介电常数降低了差分传输线较短内线的相速度。减小内线的相速度可以使传输线相位差接近180°,从而抑制差共模噪声转换。仿真结果表明,增加介质材料的长度会降低传输线的相速度,从而抑制差共模噪声。测量结果与模拟结果一致,表明Scd21受到抑制。眼图眼高提高19.63%,提高了系统信号的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
23.50%
发文量
489
审稿时长
3 months
期刊介绍: International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology. Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . . -Computer-Aided Modeling -Computer-Aided Analysis -Computer-Aided Optimization -Software and Manufacturing Techniques -Computer-Aided Measurements -Measurements Interfaced with CAD Systems In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.
期刊最新文献
A Fast Electromagnetic Radiation Simulation Tool for Finite Periodic Array Antenna and Universal Array Antenna A Broadband RCS Reduction Coating Using a Novel Arrangement of Metasurface Unit Cells Based on Two Substrates BNN-LSTM-DE Surrogate Model–Assisted Antenna Optimization Method Based on Data Selection A Spaceborne Ka-Band Earth-Coverage Phased Array Antenna Based on DBF-Shared Subarray for LEO Communications A Wideband High-Efficiency Dual-Polarized Metal-Only Reflectarray Antenna Using Folded Groove Elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1