EWM: An entropy-based framework for estimating energy consumption of edge servers

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Engineering reports : open access Pub Date : 2023-09-20 DOI:10.1002/eng2.12777
Guangxu Li, Junke Li
{"title":"EWM: An entropy-based framework for estimating energy consumption of edge servers","authors":"Guangxu Li,&nbsp;Junke Li","doi":"10.1002/eng2.12777","DOIUrl":null,"url":null,"abstract":"<p>In mobile edge computing (MEC), accurately predicting and monitoring the energy consumption of edge servers is a key challenge in achieving green computing. The importance of solving this problem is that it can help optimize the energy usage in data centers and thus reduce the carbon emission of MEC. To this end, we propose an innovative entropy-based power modeling framework called entropy weighted model (EWM). The EWM framework weights and combines classical prediction models by analyzing the major components of a server and selecting appropriate parameters. We validate the performance of EWM using real server power and performance counter data and compare it with other classical prediction models by Friedman test. The results show that EWM outperforms other classical prediction models in all test datasets. This result validates the significant advantages of our EWM framework in solving the critical problem of edge server power prediction, and provides an effective tool for achieving data center energy optimization and promoting green computing, resulting in a highly general and accurate prediction model.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.12777","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.12777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In mobile edge computing (MEC), accurately predicting and monitoring the energy consumption of edge servers is a key challenge in achieving green computing. The importance of solving this problem is that it can help optimize the energy usage in data centers and thus reduce the carbon emission of MEC. To this end, we propose an innovative entropy-based power modeling framework called entropy weighted model (EWM). The EWM framework weights and combines classical prediction models by analyzing the major components of a server and selecting appropriate parameters. We validate the performance of EWM using real server power and performance counter data and compare it with other classical prediction models by Friedman test. The results show that EWM outperforms other classical prediction models in all test datasets. This result validates the significant advantages of our EWM framework in solving the critical problem of edge server power prediction, and provides an effective tool for achieving data center energy optimization and promoting green computing, resulting in a highly general and accurate prediction model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EWM:基于熵的边缘服务器能耗估算框架
在移动边缘计算(MEC)中,准确预测和监控边缘服务器的能耗是实现绿色计算的关键挑战。解决这一问题的重要性在于,它有助于优化数据中心的能源使用,从而减少 MEC 的碳排放。为此,我们提出了一种创新的基于熵的功率建模框架,称为熵加权模型(EWM)。EWM 框架通过分析服务器的主要组件并选择适当的参数,对经典预测模型进行加权和组合。我们使用真实的服务器功率和性能计数器数据验证了 EWM 的性能,并通过 Friedman 测试将其与其他经典预测模型进行了比较。结果表明,在所有测试数据集中,EWM 的性能都优于其他经典预测模型。这一结果验证了我们的 EWM 框架在解决边缘服务器功率预测这一关键问题上的显著优势,并为实现数据中心能源优化和促进绿色计算提供了一个有效的工具,形成了一个高度通用和准确的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Issue Information Understanding the Effects of Manufacturing Attributes on Damage Tolerance of Additively Manufactured Parts and Exploring Synergy Among Process-Structure-Properties. A Comprehensive Review Issue Information Correction to “The Proof of Concept of Uninterrupted Push-Pull Electromagnetic Propulsion and Energy Conversion Systems for Drones and Planet Landers” Socio-economic impact of solar cooking technologies on community kitchens under different climate conditions: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1