{"title":"Estimating individual radio occultation uncertainties using the observations and environmental parameters","authors":"Jeremiah Sjoberg, Richard Anthes, Hailing Zhang","doi":"10.1175/jtech-d-23-0029.1","DOIUrl":null,"url":null,"abstract":"Abstract Estimation of uncertainties (random error statistics) of radio occultation (RO) observations is important for their effective assimilation in numerical weather prediction (NWP) models. Average uncertainties can be estimated for large samples of RO observations and these statistics may be used for specifying the observation errors in NWP data assimilation. However, the uncertainties of individual RO observations vary, and so using average uncertainty estimates will overestimate the uncertainties of some observations and underestimate those of others, reducing their overall effectiveness in the assimilation. Several parameters associated with RO observations or their atmospheric environments have been proposed to estimate individual RO errors. These include the standard deviation of bending angle (BA) departures from either climatology in the upper stratosphere and lower mesosphere (STDV) or the sample mean between 40 and 60 km (STD4060), the local spectral width (LSW), and the magnitude of the horizontal gradient of refractivity (|∇ H N|). In this paper we show how the uncertainties of two RO data sets, COSMIC-2 and Spire BA, as well as their combination, vary with these parameters. We find that the uncertainties are highly correlated with STDV and STD4060 in the stratosphere, and with LSW and |∇ H N| in the lower troposphere. These results suggest a hybrid error model for individual BA observations that uses an average statistical model of RO errors modified by STDV or STD4060 above 30 km, and LSW or |∇ H N| below 8 km.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":"16 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jtech-d-23-0029.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Estimation of uncertainties (random error statistics) of radio occultation (RO) observations is important for their effective assimilation in numerical weather prediction (NWP) models. Average uncertainties can be estimated for large samples of RO observations and these statistics may be used for specifying the observation errors in NWP data assimilation. However, the uncertainties of individual RO observations vary, and so using average uncertainty estimates will overestimate the uncertainties of some observations and underestimate those of others, reducing their overall effectiveness in the assimilation. Several parameters associated with RO observations or their atmospheric environments have been proposed to estimate individual RO errors. These include the standard deviation of bending angle (BA) departures from either climatology in the upper stratosphere and lower mesosphere (STDV) or the sample mean between 40 and 60 km (STD4060), the local spectral width (LSW), and the magnitude of the horizontal gradient of refractivity (|∇ H N|). In this paper we show how the uncertainties of two RO data sets, COSMIC-2 and Spire BA, as well as their combination, vary with these parameters. We find that the uncertainties are highly correlated with STDV and STD4060 in the stratosphere, and with LSW and |∇ H N| in the lower troposphere. These results suggest a hybrid error model for individual BA observations that uses an average statistical model of RO errors modified by STDV or STD4060 above 30 km, and LSW or |∇ H N| below 8 km.
期刊介绍:
The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.