{"title":"An Emerging Class of Antimicrobial Heterocycles Derived from Natural Sources","authors":"Benu Chaudhary, Babita Patial, Rajiv Sharma, Anshul Chawla","doi":"10.2174/0115701808254524231018040600","DOIUrl":null,"url":null,"abstract":"Abstract: An energetic desire to reduce the undesirable effects brought on by synthetic heterocyclic substances and to combat antimicrobial resistance has led to an increase in curiosity in using natural antimicrobial agents derived from plants, such as phenolics, catechol, pyrogallol, essential oils, Lchicoric acid, caffeic acid, catechins, coumarin, proanthocyanidins, 4-thiazolidinone, and alkaloids. The usage of naturally occurring heterocycles against Gram-positive (S. aureus, S. pyogenes, B. subtilis, A. niger, and B. cereus) and Gram-negative (P. aeruginosa, E. coli, K. pneumonia, P. vulgaris, and S. infantis) bacteria has been the subject of increased investigation in past few decades. This review targets the use of plant-derived antimicrobials to increase the microbiological safety of food and the possible antimicrobial activity of nitrogen- and oxygen-based heterocyclic compounds. It is possible to find novel medications to treat infectious diseases and address the issues brought on by antibiotic resistance by exploring and utilising the potential of these chemicals. Additional research is desirable on the toxicological effects and potential additive and/or synergistic antimicrobial actions in order to maximise the usage of these potential natural antimicrobials in foods.","PeriodicalId":18059,"journal":{"name":"Letters in Drug Design & Discovery","volume":"83 4","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Drug Design & Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115701808254524231018040600","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: An energetic desire to reduce the undesirable effects brought on by synthetic heterocyclic substances and to combat antimicrobial resistance has led to an increase in curiosity in using natural antimicrobial agents derived from plants, such as phenolics, catechol, pyrogallol, essential oils, Lchicoric acid, caffeic acid, catechins, coumarin, proanthocyanidins, 4-thiazolidinone, and alkaloids. The usage of naturally occurring heterocycles against Gram-positive (S. aureus, S. pyogenes, B. subtilis, A. niger, and B. cereus) and Gram-negative (P. aeruginosa, E. coli, K. pneumonia, P. vulgaris, and S. infantis) bacteria has been the subject of increased investigation in past few decades. This review targets the use of plant-derived antimicrobials to increase the microbiological safety of food and the possible antimicrobial activity of nitrogen- and oxygen-based heterocyclic compounds. It is possible to find novel medications to treat infectious diseases and address the issues brought on by antibiotic resistance by exploring and utilising the potential of these chemicals. Additional research is desirable on the toxicological effects and potential additive and/or synergistic antimicrobial actions in order to maximise the usage of these potential natural antimicrobials in foods.
期刊介绍:
Aims & Scope
Letters in Drug Design & Discovery publishes letters, mini-reviews, highlights and guest edited thematic issues in all areas of rational drug design and discovery including medicinal chemistry, in-silico drug design, combinatorial chemistry, high-throughput screening, drug targets, and structure-activity relationships. The emphasis is on publishing quality papers very rapidly by taking full advantage of latest Internet technology for both submission and review of manuscripts. The online journal is an essential reading to all pharmaceutical scientists involved in research in drug design and discovery.