Development and evaluation of biodegradable starch-based films containing cellulose nanocrystals/titanium dioxide nanoparticles as an alternative for food packaging
Aluisie Picolotto, Lilian Vanessa Rossa Beltrami, Danielli Dallé, Heitor Luiz Ornaghi Júnior, Ademir José Zattera, Andre Luis Catto, Cleide Borsoi
{"title":"Development and evaluation of biodegradable starch-based films containing cellulose nanocrystals/titanium dioxide nanoparticles as an alternative for food packaging","authors":"Aluisie Picolotto, Lilian Vanessa Rossa Beltrami, Danielli Dallé, Heitor Luiz Ornaghi Júnior, Ademir José Zattera, Andre Luis Catto, Cleide Borsoi","doi":"10.1177/08927057231208138","DOIUrl":null,"url":null,"abstract":"Biodegradable starch-based films are an environmentally friendly solution to reduce the use of petroleum-derived polymers. Thus, this work aims to obtain corn starch films by incorporating 5% w/w of cellulose nanocrystals (CNC), different concentrations of titanium dioxide nanoparticles (TiO 2 ) (0, 0.25, 0.5, 1, and 2% w/w), and 40% w/w of glycerol and sorbitol (plasticizers), in a 1:1 ratio. The films showed a high potential for UV-light barrier, with an increase of 307% incorporating only 2 wt% of TiO 2 in relation to the film without incorporation of TiO 2 . The use of TiO 2 increased the white pigmentation capacity of the samples and decreased the lower water solubility – a reduction of approximately 28% using 0.5 wt% TiO 2 compared to the CNC control sample was observed. The incorporation of TiO 2 nanoparticles increased the tensile strength by adding 1 wt% of TiO 2 nanoparticles with 34% increase in the tensile strength of the film without incorporation of TiO 2 . The thermal stability of the films with 1 wt% TiO 2 and 5 wt% CNC increased by 85°C. Thus, the addition of CNC and TiO 2 enabled an improvement in the physical/thermal/chemical properties of the films, making them possible alternatives for use in food packaging.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"25 5","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/08927057231208138","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Biodegradable starch-based films are an environmentally friendly solution to reduce the use of petroleum-derived polymers. Thus, this work aims to obtain corn starch films by incorporating 5% w/w of cellulose nanocrystals (CNC), different concentrations of titanium dioxide nanoparticles (TiO 2 ) (0, 0.25, 0.5, 1, and 2% w/w), and 40% w/w of glycerol and sorbitol (plasticizers), in a 1:1 ratio. The films showed a high potential for UV-light barrier, with an increase of 307% incorporating only 2 wt% of TiO 2 in relation to the film without incorporation of TiO 2 . The use of TiO 2 increased the white pigmentation capacity of the samples and decreased the lower water solubility – a reduction of approximately 28% using 0.5 wt% TiO 2 compared to the CNC control sample was observed. The incorporation of TiO 2 nanoparticles increased the tensile strength by adding 1 wt% of TiO 2 nanoparticles with 34% increase in the tensile strength of the film without incorporation of TiO 2 . The thermal stability of the films with 1 wt% TiO 2 and 5 wt% CNC increased by 85°C. Thus, the addition of CNC and TiO 2 enabled an improvement in the physical/thermal/chemical properties of the films, making them possible alternatives for use in food packaging.
期刊介绍:
The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).