Omni-Modeler: Rapid Adaptive Visual Recognition with Dynamic Learning

Michael Karnes, Alper Yilmaz
{"title":"Omni-Modeler: Rapid Adaptive Visual Recognition with Dynamic Learning","authors":"Michael Karnes, Alper Yilmaz","doi":"10.5121/sipij.2023.14501","DOIUrl":null,"url":null,"abstract":"Deep neural network (DNN) image classification has grown rapidly as a general pattern detection tool for an extremely diverse set of applications; yet dataset accessibility remains a major limiting factor for many applications. This paper presents a novel dynamic learning approach to leverage pretrained knowledge to novel image spaces in the effort to extend the algorithm knowledge domain and reduce dataset collection requirements. The proposed Omni-Modeler generates a dynamic knowledge set by reshaping known concepts to create dynamic representation models of unknown concepts. The Omni-Modeler embeds images with a pretrained DNN and formulates compressed language encoder. The language encoded feature space is then used to rapidly generate a dynamic dictionary of concept appearance models. The results of this study demonstrate the Omni-Modeler capability to rapidly adapt across a range of image types enabling the usage of dynamically learning image classification with limited data availability.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"197 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/sipij.2023.14501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural network (DNN) image classification has grown rapidly as a general pattern detection tool for an extremely diverse set of applications; yet dataset accessibility remains a major limiting factor for many applications. This paper presents a novel dynamic learning approach to leverage pretrained knowledge to novel image spaces in the effort to extend the algorithm knowledge domain and reduce dataset collection requirements. The proposed Omni-Modeler generates a dynamic knowledge set by reshaping known concepts to create dynamic representation models of unknown concepts. The Omni-Modeler embeds images with a pretrained DNN and formulates compressed language encoder. The language encoded feature space is then used to rapidly generate a dynamic dictionary of concept appearance models. The results of this study demonstrate the Omni-Modeler capability to rapidly adapt across a range of image types enabling the usage of dynamically learning image classification with limited data availability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Omni-Modeler:动态学习的快速自适应视觉识别
深度神经网络(DNN)图像分类已经迅速发展成为一种通用的模式检测工具,用于极其多样化的应用;然而,数据集可访问性仍然是许多应用程序的主要限制因素。本文提出了一种新的动态学习方法,将预训练的知识应用于新的图像空间,以扩展算法的知识域并减少数据集收集需求。提出的Omni-Modeler通过重塑已知概念来创建未知概念的动态表示模型,从而生成动态知识集。Omni-Modeler使用预训练的DNN嵌入图像,并制定压缩语言编码器。然后使用语言编码的特征空间快速生成概念外观模型的动态字典。本研究的结果表明,Omni-Modeler能够快速适应一系列图像类型,从而在有限的数据可用性下使用动态学习图像分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Omni-Modeler: Rapid Adaptive Visual Recognition with Dynamic Learning A Comparative Study of Machine Learning Algorithms for EEG Signal Classification Combining of Narrative News and VR Games: Comparison of Various Forms of News Games Mixed Spectra for Stable Signals from Discrete Observations Fractional Order Butterworth Filter for Fetal Electrocardiographic Signal Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1