Klasifikasi Tingkat Kerusakan Sektor Pasca Bencana Alam Menggunakan Metode MULTIMOORA Berbasis Web

Aniss Fatul Fu'adah, Agung Teguh Wibowo Almais, A’la Syauqi
{"title":"Klasifikasi Tingkat Kerusakan Sektor Pasca Bencana Alam Menggunakan Metode MULTIMOORA Berbasis Web","authors":"Aniss Fatul Fu'adah, Agung Teguh Wibowo Almais, A’la Syauqi","doi":"10.14421/jiska.2023.8.3.222-230","DOIUrl":null,"url":null,"abstract":"During 2020-2021, 10,152 disasters occurred in Indonesia, significantly impacting the affected sectors. The recovery of these sectors needs to be done as quickly as possible to maintain human survival. This study aims to analyze the factors that affect sector damage after natural disasters in Indonesia and measure the classification accuracy. The data used in this research is data from the Regional Disaster Management Agency of Malang City in 2020. This study developed a web-based Decision Support System (DSS) using The Multiplicative Form Integrated MOORA (MULTIMOORA) method. This method is the result of the development of the MOORA method by adding a complete multiplication form to the MOORA method. In this study, the MULTIMOORA method was used to classify the level of damage to sectors after natural disasters. The results showed that using the MULTIMOORA method in this DSS resulted in an accuracy rate of 84% and was included in the good enough category.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2023.8.3.222-230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

During 2020-2021, 10,152 disasters occurred in Indonesia, significantly impacting the affected sectors. The recovery of these sectors needs to be done as quickly as possible to maintain human survival. This study aims to analyze the factors that affect sector damage after natural disasters in Indonesia and measure the classification accuracy. The data used in this research is data from the Regional Disaster Management Agency of Malang City in 2020. This study developed a web-based Decision Support System (DSS) using The Multiplicative Form Integrated MOORA (MULTIMOORA) method. This method is the result of the development of the MOORA method by adding a complete multiplication form to the MOORA method. In this study, the MULTIMOORA method was used to classify the level of damage to sectors after natural disasters. The results showed that using the MULTIMOORA method in this DSS resulted in an accuracy rate of 84% and was included in the good enough category.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于Web的MULTIMOORA方法对自然灾害后部门损伤等级进行分类
在2020-2021年期间,印度尼西亚发生了10,152起灾害,严重影响了受影响的部门。这些部门的恢复需要尽快完成,以维持人类的生存。本研究旨在分析印尼自然灾害后影响部门损失的因素,并衡量分类精度。本研究使用的数据来自2020年玛琅市区域灾害管理局的数据。本研究开发了一个基于网络的决策支持系统(DSS),使用乘法形式集成mooora (MULTIMOORA)方法。该方法是通过在MOORA方法中添加一个完整的乘法表来发展MOORA方法的结果。本研究采用MULTIMOORA方法对自然灾害后各行业的破坏程度进行分类。结果表明,在该DSS中使用MULTIMOORA方法的准确率为84%,属于足够好的类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
期刊最新文献
Pemodelan Proses Bisnis Kuliah Online MOOCs menggunakan BPMN (Studi Kasus alison.com) Analisis Bibliometrik Publikasi Isu Kebocoran Data Menggunakan VOSviewer Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Klasifikasi Tingkat Kerusakan Sektor Pasca Bencana Alam Menggunakan Metode MULTIMOORA Berbasis Web Pembuatan Ergonomic Mechanical Keyboard untuk Mengurangi Cidera Tangan Menggunakan Teknologi Arduino
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1