{"title":"Critical review of methods for intensifying the gas generation process in the reaction channel during underground coal gasification (UCG)","authors":"Vasyl Lozynskyi","doi":"10.33271/mining17.03.067","DOIUrl":null,"url":null,"abstract":"Purpose. The research purpose is to perform a critical analysis of methods for intensifying the gas generation process in the reaction channel to improve the efficiency and economic feasibility of coal seam gasification technology. The paper studies in detail the aspects of the chemical mechanism and technological parameters of this process in order to determine the possibilities for improving efficiency and productivity. Methods. The review study is based on an approach that includes an analysis of the underground coal gasification development, the study of chemical reactions in the reaction channel, the study of the influence of factors such as temperature, pressure, blast and producer gas composition, etc. The experimental research data systematization is based on in-depth analysis of scientific papers published in peer-reviewed journals. Findings. The systematized results of research into nine main methods for intensifying the gas generation process in the reaction channel during underground coal gasification are presented. The factors having the greatest influence on gas generation in the reaction channel have been identified. Originality. Research results indicate the possibility of improving the process of underground coal gasification. The revealed relationships between different factors contribute to a deeper understanding of the chemical and physical processes in the reaction channel. Practical implications. The results obtained can be used to optimize the underground coal gasification process, increase the productivity and quality of gas generation. The specified results can serve as a basis for further scientific research and innovative developments in obtaining an alternative type of fuel.","PeriodicalId":43896,"journal":{"name":"Mining of Mineral Deposits","volume":"55 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining of Mineral Deposits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/mining17.03.067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose. The research purpose is to perform a critical analysis of methods for intensifying the gas generation process in the reaction channel to improve the efficiency and economic feasibility of coal seam gasification technology. The paper studies in detail the aspects of the chemical mechanism and technological parameters of this process in order to determine the possibilities for improving efficiency and productivity. Methods. The review study is based on an approach that includes an analysis of the underground coal gasification development, the study of chemical reactions in the reaction channel, the study of the influence of factors such as temperature, pressure, blast and producer gas composition, etc. The experimental research data systematization is based on in-depth analysis of scientific papers published in peer-reviewed journals. Findings. The systematized results of research into nine main methods for intensifying the gas generation process in the reaction channel during underground coal gasification are presented. The factors having the greatest influence on gas generation in the reaction channel have been identified. Originality. Research results indicate the possibility of improving the process of underground coal gasification. The revealed relationships between different factors contribute to a deeper understanding of the chemical and physical processes in the reaction channel. Practical implications. The results obtained can be used to optimize the underground coal gasification process, increase the productivity and quality of gas generation. The specified results can serve as a basis for further scientific research and innovative developments in obtaining an alternative type of fuel.