Influence of combined electromechanical processing modes of 40Kh steel on its structure and hardness

A. S. Simachev, T. N. Oskolkova, R. A. Shevchenko
{"title":"Influence of combined electromechanical processing modes of 40Kh steel on its structure and hardness","authors":"A. S. Simachev, T. N. Oskolkova, R. A. Shevchenko","doi":"10.17073/0368-0797-2023-4-421-426","DOIUrl":null,"url":null,"abstract":"The paper considers the effect of combined electromechanical processing in three different modes on the structure and hardness of the surface layers of 40Kh steel, which was in a normalized state (the original structure). The modes differ from each other by the different applied load and the number of pulses. The applied load in modes 1 and 2 (current strength 39 kA, pulse time 0.02 s, number of pulses 1) is 100 and 250 MPa, respectively. A distinctive feature of mode 3 compared to mode 2 is a greater number of pulses (two). Metallographically it was established that in all three cases a hardened surface layer of different thickness (from 300 to 1200 μm) with a hardness of 593 – 598 HV is formed, consisting of two zones (a surface zone with a structure of fine-needle martensite; a transition zone smoothly transitioning into the initial ferrite structure). The transition zone (treatment according to mode 1 ) in its structure contains martensite and ferrite. The transition zone (mode 2 processing) consists of a Widemannstett structure. A more substantial surface heating zone according to this mode (700 μm) in comparison with the processing according to mode 1 (300 μm) in combination with intensive heat removal contributed to the formation of a Widmanstett structure, which is defective and unacceptable for operation. The transition zone with the processing according to mode 3 has the structure of martensite and ferrite. The formation of a defective Widmanstett structure in the transition zone does not occur, since 2 times more pulses are used during processing than in mode 2 . This contributes to the heating of the surface layer to a greater depth (1200 μm), and, consequently, the structure formation in the transition zone occurs from the intercritical interval Ag 3 – Ag 1 .","PeriodicalId":35527,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0368-0797-2023-4-421-426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers the effect of combined electromechanical processing in three different modes on the structure and hardness of the surface layers of 40Kh steel, which was in a normalized state (the original structure). The modes differ from each other by the different applied load and the number of pulses. The applied load in modes 1 and 2 (current strength 39 kA, pulse time 0.02 s, number of pulses 1) is 100 and 250 MPa, respectively. A distinctive feature of mode 3 compared to mode 2 is a greater number of pulses (two). Metallographically it was established that in all three cases a hardened surface layer of different thickness (from 300 to 1200 μm) with a hardness of 593 – 598 HV is formed, consisting of two zones (a surface zone with a structure of fine-needle martensite; a transition zone smoothly transitioning into the initial ferrite structure). The transition zone (treatment according to mode 1 ) in its structure contains martensite and ferrite. The transition zone (mode 2 processing) consists of a Widemannstett structure. A more substantial surface heating zone according to this mode (700 μm) in comparison with the processing according to mode 1 (300 μm) in combination with intensive heat removal contributed to the formation of a Widmanstett structure, which is defective and unacceptable for operation. The transition zone with the processing according to mode 3 has the structure of martensite and ferrite. The formation of a defective Widmanstett structure in the transition zone does not occur, since 2 times more pulses are used during processing than in mode 2 . This contributes to the heating of the surface layer to a greater depth (1200 μm), and, consequently, the structure formation in the transition zone occurs from the intercritical interval Ag 3 – Ag 1 .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
40Kh钢机电复合加工方式对其组织和硬度的影响
研究了三种不同方式的组合机电加工对处于正火状态(原始组织)的40Kh钢表层组织和硬度的影响。由于施加的载荷和脉冲数不同,模态各不相同。模式1和模式2(电流强度39 kA,脉冲时间0.02 s,脉冲数1)的外加负载分别为100和250 MPa。与模式2相比,模式3的一个显著特征是脉冲数更多(两个)。金相分析表明,三种情况下均形成了不同厚度(300 ~ 1200 μm)的硬化表面层,硬度为593 ~ 598 HV,由两个区组成:表层为细针状马氏体组织;过渡区平稳过渡到初始铁素体结构)。其组织中的过渡区(按模式1处理)含有马氏体和铁素体。过渡区(模式2处理)由Widemannstett结构组成。与模式1 (300 μm)相比,该模式(700 μm)的表面受热区更大,再加上密集的散热,导致了Widmanstett结构的形成,这是有缺陷的,无法接受的。按模式3处理的过渡区具有马氏体和铁素体的组织。由于在处理过程中使用的脉冲比模2多2倍,因此在过渡区不会形成有缺陷的Widmanstett结构。这使得表面层的加热深度更大(1200 μm),因此,过渡区的结构形成发生在临界区间Ag 3 - Ag 1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya
Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya Materials Science-Materials Science (miscellaneous)
CiteScore
0.90
自引率
0.00%
发文量
81
期刊最新文献
Effect of accelerated cooling after cross-helical rolling on formation of structure and low-temperature fracture toughness of low-carbon steel Physical properties and structure of boron-containing slags during reduction period of AOD process Selective solid-phase reduction of iron in phosphorous oolite ores Institutionalization of ESG-principles at the international level and in the Russian Federation, their impact on ferrous metallurgy enterprises. Part 2 Carbides of transition metals: Properties, application and production. Review. Part 2. Chromium and zirconium carbides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1