Saraswathi R.C, Lavanya Maruthasalam, Udhayakumar M, Jaroszewicz Z
{"title":"Focusing properties of Azimuthally Polarized Lorentz Gauss Vortex Beam through a Dielectric Interface","authors":"Saraswathi R.C, Lavanya Maruthasalam, Udhayakumar M, Jaroszewicz Z","doi":"10.4302/plp.v15i3.1200","DOIUrl":null,"url":null,"abstract":"Tight focusing properties of azimuthally polarized Lorentz Gaussian vortex beam through a dielectric interface are numerically studied by vector diffraction theory. The focusing properties, such as spot size, depth of focus, and maximum intensity position, are numerically calculated by properly manipulating the Lorentz parameter with/without annular obstruction values. Thus, using annular obstruction, one can generate a highly confined focal spot of long focal depth when using an azimuthally polarized Lorentz Gaussian vortex beam. Full Text: PDF References A. Ashkin et al., \"Observation of a single-beam gradient force optical trap for dielectric particles\", Opt. Lett. 11, 288 (1986). CrossRef A. Ambardekar, Y.Q. Li, \"Optical levitation and manipulation of stuck particles with pulsed optical tweezers\", Opt. Lett. 30, 1797 (2005). CrossRef P. Zemánek, C.J. Foot, \"Atomic dipole trap formed by blue detuned strong Gaussian standing wave\", Opt. Commun. 146, 119(1998). CrossRef S.M. Block et al., \"Bead movement by single kinesin molecules studied with optical tweezers\", Nature 348, 348 (1990). CrossRef D.E. Smithet al., \"The bacteriophage φ29 portal motor can package DNA against a large internal force\", Nature 413, 748 (2001). CrossRef L. Oroszi et al., \"Direct Measurement of Torque in an Optical Trap and Its Application to Double-Strand DNA\", Phys. Rev. Lett. 97, 058301 (2006). CrossRef D.P. Biss, T.G. Brown, \"Cylindrical vector beam focusing through a dielectric interface\", Opt. Express 9, 490 (2001). CrossRef P. Török et al., \"Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I\", J. Opt. Soc. Am. A 12, 2136 (1995). CrossRef S.H. Wiersma et al., \"Comparison of different theories for focusing through a plane interface\", J. Opt. Soc. Am. A 14, 1482 (1997). CrossRef L.E. Helseth, \"Roles of polarization, phase and amplitude in solid immersion lens systems\", Opt. Commun. 191, 161 (2001). CrossRef P. Zhou et al., \"Propagation properties of a Lorentz beam array\", Appl. Opt. 49, 2497 (2010). CrossRef O.E. Gawhary, S. Severini, \"Lorentz beams and symmetry properties in paraxial optics\", J. Opt. A: Pure Appl Opt 8, 409 (2006). CrossRef J. Yang et al., \"Focusing of diode laser beams: a partially coherent Lorentz model\", Proc. SPIE 6824, 68240 A (2007). CrossRef O.E. Gawhary, S. Severini, \"Lorentz beams as a basis for a new class of rectangularly symmetric optical fields\", Opt. Commun. 269, 274 (2007). CrossRef H. Yu, L. Xiong, B. Lü, \"Nonparaxial Lorentz and Lorentz–Gauss beams\", Optik 121,1455(2010). CrossRef Z. Zhang, J. Pu, X. Wang, \"Tight Focusing of Radially and Azimuthally Polarized Vortex Beams through a Dielectric Interface\", Chin. Phys. Lett. 25, 1664 (2008). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"68 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v15i3.1200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Tight focusing properties of azimuthally polarized Lorentz Gaussian vortex beam through a dielectric interface are numerically studied by vector diffraction theory. The focusing properties, such as spot size, depth of focus, and maximum intensity position, are numerically calculated by properly manipulating the Lorentz parameter with/without annular obstruction values. Thus, using annular obstruction, one can generate a highly confined focal spot of long focal depth when using an azimuthally polarized Lorentz Gaussian vortex beam. Full Text: PDF References A. Ashkin et al., "Observation of a single-beam gradient force optical trap for dielectric particles", Opt. Lett. 11, 288 (1986). CrossRef A. Ambardekar, Y.Q. Li, "Optical levitation and manipulation of stuck particles with pulsed optical tweezers", Opt. Lett. 30, 1797 (2005). CrossRef P. Zemánek, C.J. Foot, "Atomic dipole trap formed by blue detuned strong Gaussian standing wave", Opt. Commun. 146, 119(1998). CrossRef S.M. Block et al., "Bead movement by single kinesin molecules studied with optical tweezers", Nature 348, 348 (1990). CrossRef D.E. Smithet al., "The bacteriophage φ29 portal motor can package DNA against a large internal force", Nature 413, 748 (2001). CrossRef L. Oroszi et al., "Direct Measurement of Torque in an Optical Trap and Its Application to Double-Strand DNA", Phys. Rev. Lett. 97, 058301 (2006). CrossRef D.P. Biss, T.G. Brown, "Cylindrical vector beam focusing through a dielectric interface", Opt. Express 9, 490 (2001). CrossRef P. Török et al., "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I", J. Opt. Soc. Am. A 12, 2136 (1995). CrossRef S.H. Wiersma et al., "Comparison of different theories for focusing through a plane interface", J. Opt. Soc. Am. A 14, 1482 (1997). CrossRef L.E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems", Opt. Commun. 191, 161 (2001). CrossRef P. Zhou et al., "Propagation properties of a Lorentz beam array", Appl. Opt. 49, 2497 (2010). CrossRef O.E. Gawhary, S. Severini, "Lorentz beams and symmetry properties in paraxial optics", J. Opt. A: Pure Appl Opt 8, 409 (2006). CrossRef J. Yang et al., "Focusing of diode laser beams: a partially coherent Lorentz model", Proc. SPIE 6824, 68240 A (2007). CrossRef O.E. Gawhary, S. Severini, "Lorentz beams as a basis for a new class of rectangularly symmetric optical fields", Opt. Commun. 269, 274 (2007). CrossRef H. Yu, L. Xiong, B. Lü, "Nonparaxial Lorentz and Lorentz–Gauss beams", Optik 121,1455(2010). CrossRef Z. Zhang, J. Pu, X. Wang, "Tight Focusing of Radially and Azimuthally Polarized Vortex Beams through a Dielectric Interface", Chin. Phys. Lett. 25, 1664 (2008). CrossRef
利用矢量衍射理论,对方位偏振洛伦兹高斯涡旋光束通过介质界面的紧密聚焦特性进行了数值研究。通过适当地控制洛伦兹参数,计算出光斑大小、聚焦深度和最大强度位置等聚焦特性。因此,当使用方位极化洛伦兹高斯涡旋光束时,使用环形障碍物可以产生长焦深的高度受限焦斑。a . Ashkin et al.,“介质粒子单束梯度力光阱的观测”,光学学报,11,288(1986)。李永强,“脉冲光镊对悬浮粒子的光学控制”,光学学报,1997,30(2005)。CrossRef P. Zemánek, C.J. Foot,“蓝色失谐强高斯驻波形成的原子偶极子阱”,光学学报,146,119(1998)。CrossRef S.M. Block et al.,“用光学镊子研究单驱动蛋白分子的头部运动”,Nature 348, 348(1990)。CrossRef D.E. Smithet al.,“φ29噬菌体入口电机可以包装DNA以抵抗巨大的内力”,Nature 413, 748(2001)。CrossRef L. Oroszi et al.,“光阱中扭矩的直接测量及其在双链DNA中的应用”,物理学报。Rev. Lett. 97, 058301(2006)。CrossRef D.P. Biss, T.G. Brown,“通过介质界面聚焦的圆柱形矢量光束”,光子学报,9(2001)。CrossRef . Török等人,“光通过折射率不匹配的材料之间的平面界面聚焦的电磁衍射:电磁场的结构。”I”,J. Opt. Soc。点。A 12, 2136(1995)。CrossRef S.H. Wiersma et al.,“平面界面聚焦不同理论的比较”,J. Opt. Soc。点。A 14,1482(1997)。CrossRef L.E. Helseth,“固体浸没透镜系统中偏振、相位和振幅的作用”,光学学报,1999,16(2001)。CrossRef P. Zhou et al.,“Lorentz波束阵列的传输特性”,applied。选择49,2497(2010)。* * * * *,“近轴光学中洛伦兹光束的对称特性”,光学学报,8(6)(2006)。CrossRef J. Yang等,“二极管激光光束聚焦:部分相干的Lorentz模型”,中国激光工程学报(ei), 2007年第6期。CrossRef e . e . Gawhary, S. Severini,“基于Lorentz光束的新型矩形对称光场”,光学学报,269,274(2007)。[交叉参考]于辉,熊丽丽,B. Lü,“非准轴洛伦兹与洛伦兹-高斯光束”,光学学报,121,1455(2010)。张志强,王晓东,“涡旋光束在介质界面上的紧密聚焦”,中国。理论物理。左25,1664(2008)。CrossRef