The Role of Faster R-CNN Algorithm in the Internet of Things to Detect Mask Wearing: The Endemic Preparations

{"title":"The Role of Faster R-CNN Algorithm in the Internet of Things to Detect Mask Wearing: The Endemic Preparations","authors":"","doi":"10.24425/ijet.2023.147689","DOIUrl":null,"url":null,"abstract":"— Faster R-CNN is an algorithm development that continuously starts from CNN then R-CNN and Faster R-CNN. The development of the algorithm is needed to test whether the heuristic algorithm has optimal provisions. Broadly speaking, faster R-CNN is included in algorithms that are able to solve neural network and machine learning problems to detect a moving object. One of the moving objects in the current phenomenon is the use of masks. Where various countries in the world have issued endemic orations after the Covid 19 pandemic occurred. Detection tool has been prepared that has been tested at the mandatory mask door, namely for mask users. In this paper, the role of the Faster R-CNN algorithm has been carried out to detect masks poured on Internet of Thinks (IoT) devices to automatically open doors for standard mask users. From the results received that testing on the detection of moving mask objects when used reaches 100% optimal at a distance of 0.5 to 1 meter and 95% at a distance of 1.5 to 2 meters so that the process of sending detection signals to IoT devices can be carried out at a distance of 1 meter at the position mask users to automatic doors.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2023.147689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

— Faster R-CNN is an algorithm development that continuously starts from CNN then R-CNN and Faster R-CNN. The development of the algorithm is needed to test whether the heuristic algorithm has optimal provisions. Broadly speaking, faster R-CNN is included in algorithms that are able to solve neural network and machine learning problems to detect a moving object. One of the moving objects in the current phenomenon is the use of masks. Where various countries in the world have issued endemic orations after the Covid 19 pandemic occurred. Detection tool has been prepared that has been tested at the mandatory mask door, namely for mask users. In this paper, the role of the Faster R-CNN algorithm has been carried out to detect masks poured on Internet of Thinks (IoT) devices to automatically open doors for standard mask users. From the results received that testing on the detection of moving mask objects when used reaches 100% optimal at a distance of 0.5 to 1 meter and 95% at a distance of 1.5 to 2 meters so that the process of sending detection signals to IoT devices can be carried out at a distance of 1 meter at the position mask users to automatic doors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
更快R-CNN算法在物联网口罩佩戴检测中的作用:地方病准备
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
期刊最新文献
Bandwidth enhancement of circular structure microstrip antenna based on inverted C-shaped ground configuration Experimental validation of asymmetric PZT optimal shape in the active vibration reduction of triangular plates Mobile (wireless) telecommunication sector: an Indian perspective and PESTLE analysis Enhanced optimization model decision efficient multi product retail Subjective tests of speaker recognition for selected voice disguise techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1