K-Means and Fuzzy based Hybrid Clustering Algorithm for WSN

{"title":"K-Means and Fuzzy based Hybrid Clustering Algorithm for WSN","authors":"","doi":"10.24425/ijet.2023.147703","DOIUrl":null,"url":null,"abstract":"—Wireless Sensor Networks (WSN) acquired a lot of attention due to their widespread use in monitoring hostile environments, critical surveillance and security applications. In these applications, usage of wireless terminals also has grown significantly. Grouping of Sensor Nodes (SN) is called clustering and these sensor nodes are burdened by the exchange of messages caused due to successive and recurring re-clustering, which results in power loss. Since most of the SNs are fitted with non-rechargeable batteries, currently researchers have been concentrating their efforts on enhancing the longevity of these nodes. For battery constrained WSN concerns, the clustering mechanism has emerged as a desirable subject since it is predominantly good at conserving the resources especially energy for network activities. This proposed work addresses the problem of load balancing and Cluster Head (CH) selection in cluster with minimum energy expenditure. So here, we propose hybrid method in which cluster formation is done using unsupervised machine learning based k-means algorithm and Fuzzy-logic approach for CH selection.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"13 11","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2023.147703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

—Wireless Sensor Networks (WSN) acquired a lot of attention due to their widespread use in monitoring hostile environments, critical surveillance and security applications. In these applications, usage of wireless terminals also has grown significantly. Grouping of Sensor Nodes (SN) is called clustering and these sensor nodes are burdened by the exchange of messages caused due to successive and recurring re-clustering, which results in power loss. Since most of the SNs are fitted with non-rechargeable batteries, currently researchers have been concentrating their efforts on enhancing the longevity of these nodes. For battery constrained WSN concerns, the clustering mechanism has emerged as a desirable subject since it is predominantly good at conserving the resources especially energy for network activities. This proposed work addresses the problem of load balancing and Cluster Head (CH) selection in cluster with minimum energy expenditure. So here, we propose hybrid method in which cluster formation is done using unsupervised machine learning based k-means algorithm and Fuzzy-logic approach for CH selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于k均值和模糊的WSN混合聚类算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
期刊最新文献
Optimization of Animal Detection in Thermal Images Using YOLO Architecture Efficient FPGA Implementation of Recursive Least Square Adaptive Filter Using Non- Restoring Division Algorithm Comparison of Wireless Data Transmission Protocols for Residential Water Meter Applications 147684 147700
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1