Performance and Applicability of Post-Quantum Digital Signature Algorithms in Resource-Constrained Environments

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Algorithms Pub Date : 2023-11-13 DOI:10.3390/a16110518
Marin Vidaković, Kruno Miličević
{"title":"Performance and Applicability of Post-Quantum Digital Signature Algorithms in Resource-Constrained Environments","authors":"Marin Vidaković, Kruno Miličević","doi":"10.3390/a16110518","DOIUrl":null,"url":null,"abstract":"The continuous development of quantum computing necessitates the development of quantum-resistant cryptographic algorithms. In response to this demand, the National Institute of Standards and Technology selected standardized algorithms including Crystals-Dilithium, Falcon, and Sphincs+ for digital signatures. This paper provides a comparative evaluation of these algorithms across key metrics. The results indicate varying strengths and weaknesses for each algorithm, underscoring the importance of context-specific deployments. Our findings indicate that Dilithium offers advantages in low-power scenarios, Falcon excels in signature verification speed, and Sphincs+ provides robust security at the cost of computational efficiency. These results underscore the importance of context-specific deployments in specific and resource-constrained technological applications, like IoT, smart cards, blockchain, and vehicle-to-vehicle communication.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"33 3","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16110518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The continuous development of quantum computing necessitates the development of quantum-resistant cryptographic algorithms. In response to this demand, the National Institute of Standards and Technology selected standardized algorithms including Crystals-Dilithium, Falcon, and Sphincs+ for digital signatures. This paper provides a comparative evaluation of these algorithms across key metrics. The results indicate varying strengths and weaknesses for each algorithm, underscoring the importance of context-specific deployments. Our findings indicate that Dilithium offers advantages in low-power scenarios, Falcon excels in signature verification speed, and Sphincs+ provides robust security at the cost of computational efficiency. These results underscore the importance of context-specific deployments in specific and resource-constrained technological applications, like IoT, smart cards, blockchain, and vehicle-to-vehicle communication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
资源受限环境下后量子数字签名算法的性能与适用性
量子计算的不断发展要求开发抗量子密码算法。为了满足这一需求,美国国家标准与技术研究所(National Institute of Standards and Technology)为数字签名选择了包括crystals - diliium、Falcon和sphins +在内的标准化算法。本文提供了跨关键指标的这些算法的比较评估。结果表明了每种算法的不同优点和缺点,强调了特定于上下文的部署的重要性。我们的研究结果表明,diliium在低功耗场景中具有优势,Falcon在签名验证速度方面表现出色,而sphins +以计算效率为代价提供了强大的安全性。这些结果强调了在特定和资源受限的技术应用中,如物联网、智能卡、区块链和车对车通信,具体部署的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
期刊最新文献
Synthesizing Explainability Across Multiple ML Models for Structured Data. Finding Multiple Optimal Solutions to an Integer Linear Program by Random Perturbations of Its Objective Function. Anomaly Detection in High-Dimensional Time Series Data with Scaled Bregman Divergence. Specification Mining Based on the Ordering Points to Identify the Clustering Structure Clustering Algorithm and Model Checking Personalized Advertising in E-Commerce: Using Clickstream Data to Target High-Value Customers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1