Design, analysis and validation of Customised Homocentric Fresnel Collector based on longest wavelength of visible spectrum

IF 2.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Lighting Research & Technology Pub Date : 2023-11-13 DOI:10.1177/14771535231207099
V Kumar, DS Bisht, H Garg
{"title":"Design, analysis and validation of Customised Homocentric Fresnel Collector based on longest wavelength of visible spectrum","authors":"V Kumar, DS Bisht, H Garg","doi":"10.1177/14771535231207099","DOIUrl":null,"url":null,"abstract":"The paper presents the design of a Customised Homocentric Fresnel Collector (CHFC) based on the principle of superposition and the longest wavelength of the visible spectrum. A bottom-to-top approach is proposed that uses an individually designed homocentric prism based on visible light at a wavelength of 740 nm. The homocentric prism of the CHFC follows a uniform height method with varying pitch. An area focus is achieved on the plastic optical fibre (POF) bundle inlet without employing any secondary optical element. The CHFC achieves a uniform distribution of concentrated visible spectrum radiation from the Sun with a significant reduction in the hotspot problem. Comparison of the CHFC versus a mid-wavelength-based Fresnel lens shows that the CHFC delivers 9.24% more visible spectrum radiation on the POF bundle inlet. The simulated optical efficiency of the CHFC is 90.6%. Numerical analysis of a CHFC-based daylighting system shows that 331 lm (efficiency of 39.4%) can be delivered via a 10 m long fibre bundle made up of 32 POF each of 1 mm diameter. Experimental observations demonstrated that the maximum temperature recorded on the POF bundle entrance is 56.8°C during peak direct normal illuminance conditions. Note that the spectral distribution of the radiation emerging from the POF differs from the incident sunlight spectrum because of the transmission characteristics of the optical components used in the CHFC testbed.","PeriodicalId":18133,"journal":{"name":"Lighting Research & Technology","volume":"49 4","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lighting Research & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14771535231207099","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents the design of a Customised Homocentric Fresnel Collector (CHFC) based on the principle of superposition and the longest wavelength of the visible spectrum. A bottom-to-top approach is proposed that uses an individually designed homocentric prism based on visible light at a wavelength of 740 nm. The homocentric prism of the CHFC follows a uniform height method with varying pitch. An area focus is achieved on the plastic optical fibre (POF) bundle inlet without employing any secondary optical element. The CHFC achieves a uniform distribution of concentrated visible spectrum radiation from the Sun with a significant reduction in the hotspot problem. Comparison of the CHFC versus a mid-wavelength-based Fresnel lens shows that the CHFC delivers 9.24% more visible spectrum radiation on the POF bundle inlet. The simulated optical efficiency of the CHFC is 90.6%. Numerical analysis of a CHFC-based daylighting system shows that 331 lm (efficiency of 39.4%) can be delivered via a 10 m long fibre bundle made up of 32 POF each of 1 mm diameter. Experimental observations demonstrated that the maximum temperature recorded on the POF bundle entrance is 56.8°C during peak direct normal illuminance conditions. Note that the spectral distribution of the radiation emerging from the POF differs from the incident sunlight spectrum because of the transmission characteristics of the optical components used in the CHFC testbed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可见光谱最长波长的定制同心菲涅耳集热器的设计、分析和验证
本文介绍了一种基于叠加原理和可见光最长波长的定制同心菲涅耳集热器(CHFC)的设计。提出了一种自底向上的方法,使用单独设计的基于波长为740 nm的可见光的同心圆棱镜。CHFC的同心圆棱镜采用变距等高法。在不使用任何二次光学元件的情况下,在塑料光纤(POF)束进口上实现了区域焦点。CHFC实现了太阳可见光谱集中辐射的均匀分布,显著降低了热点问题。与中波长菲涅耳透镜相比,CHFC在POF束入口的可见光谱辐射增加了9.24%。CHFC的模拟光效率为90.6%。基于chfc的采光系统的数值分析表明,通过由32个直径为1毫米的POF组成的10米长的光纤束可以输送331 lm(效率为39.4%)。实验观测表明,在峰值直接正常光照条件下,POF束入口记录的最高温度为56.8℃。请注意,由于CHFC试验台中使用的光学元件的传输特性,从POF产生的辐射的光谱分布与入射的太阳光光谱不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lighting Research & Technology
Lighting Research & Technology 工程技术-光学
CiteScore
5.40
自引率
16.00%
发文量
69
审稿时长
>12 weeks
期刊介绍: Lighting Research & Technology (LR&T) publishes original peer-reviewed research on all aspects of light and lighting and is published in association with The Society of Light and Lighting. LR&T covers the human response to light, the science of light generation, light control and measurement plus lighting design for both interior and exterior environments, as well as daylighting, energy efficiency and sustainability
期刊最新文献
Design, analysis and validation of Customised Homocentric Fresnel Collector based on longest wavelength of visible spectrum Visual and non-visual responses of drivers to simulated LED headlights varying in correlated colour temperature Life cycle cost analysis of LED retrofit and luminaire replacements for four-foot T8 troffers Editorial: Special issue for early career researchers in lighting Opinion: How to foster a motivating ecosystem for our next generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1