Pedro Juan ROİG, Salvador ALCARAZ, Katja GILLY, Cristina BERNAD, Carlos JUİZ
{"title":"Applying Toroidal k-ary Grids for Optimizing Edge Data Centers","authors":"Pedro Juan ROİG, Salvador ALCARAZ, Katja GILLY, Cristina BERNAD, Carlos JUİZ","doi":"10.2339/politeknik.1327964","DOIUrl":null,"url":null,"abstract":"IoT deployments are growing exponentially, leading to a huge increase in edge computing facilities. In order to cope with such a demand, data centers need to get customized for the specific requirements of edge computing, such as a small number of physical servers and the ability to scale and unscale according to the traffic flows running at a given time. In this context, artificial intelligence plays a key part as it may anticipate when traffic throughput will increase or otherwise by scrutinizing current traffic whilst considering other factors like historical data and network baselines. In this paper, a dynamic framework is outlined based on toroidal k-ary grids so as to organize and optimize small data centers, allowing them to increase or decrease according to the current and predicted capacity of IoT-generated traffic flows.","PeriodicalId":44937,"journal":{"name":"Journal of Polytechnic-Politeknik Dergisi","volume":"18 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polytechnic-Politeknik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2339/politeknik.1327964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
IoT deployments are growing exponentially, leading to a huge increase in edge computing facilities. In order to cope with such a demand, data centers need to get customized for the specific requirements of edge computing, such as a small number of physical servers and the ability to scale and unscale according to the traffic flows running at a given time. In this context, artificial intelligence plays a key part as it may anticipate when traffic throughput will increase or otherwise by scrutinizing current traffic whilst considering other factors like historical data and network baselines. In this paper, a dynamic framework is outlined based on toroidal k-ary grids so as to organize and optimize small data centers, allowing them to increase or decrease according to the current and predicted capacity of IoT-generated traffic flows.