{"title":"Novel Method for Ranking Generalized Fuzzy Numbers Based on Normalized Height Coefficient and Benefit and Cost Areas","authors":"Thi Hong Phuong Le, Ta-Chung Chu","doi":"10.3390/axioms12111049","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for ranking generalized fuzzy numbers, which guarantees that both horizontal and vertical values are important parameters affecting the final ranking score. In this method, the normalized height coefficient is introduced to evaluate the influence of the height of fuzzy numbers on the final ranking score. The higher the normalized height coefficient of a generalized fuzzy number is, the higher its ranking. The left and right areas are presented to calculate the impact of the vertical value on the final ranking score. The left area is considered the benefit area. The right area is considered the cost area. A generalized fuzzy number is preferred if the benefit area is larger and the cost area is smaller. The proposed method can be employed to rank both normal and non-normal fuzzy numbers without normalization or height minimization. Numerical examples and comparisons with other methods highlight the feasibility and robustness of the proposed method, which can overcome the shortcomings of some existing methods and can support decision-makers in selecting the best alternative.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"138 9","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms12111049","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a method for ranking generalized fuzzy numbers, which guarantees that both horizontal and vertical values are important parameters affecting the final ranking score. In this method, the normalized height coefficient is introduced to evaluate the influence of the height of fuzzy numbers on the final ranking score. The higher the normalized height coefficient of a generalized fuzzy number is, the higher its ranking. The left and right areas are presented to calculate the impact of the vertical value on the final ranking score. The left area is considered the benefit area. The right area is considered the cost area. A generalized fuzzy number is preferred if the benefit area is larger and the cost area is smaller. The proposed method can be employed to rank both normal and non-normal fuzzy numbers without normalization or height minimization. Numerical examples and comparisons with other methods highlight the feasibility and robustness of the proposed method, which can overcome the shortcomings of some existing methods and can support decision-makers in selecting the best alternative.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.