Vision-Based Deep Reinforcement Learning of UAV-UGV Collaborative Landing Policy Using Automatic Curriculum

IF 4.4 2区 地球科学 Q1 REMOTE SENSING Drones Pub Date : 2023-11-13 DOI:10.3390/drones7110676
Chang Wang, Jiaqing Wang, Changyun Wei, Yi Zhu, Dong Yin, Jie Li
{"title":"Vision-Based Deep Reinforcement Learning of UAV-UGV Collaborative Landing Policy Using Automatic Curriculum","authors":"Chang Wang, Jiaqing Wang, Changyun Wei, Yi Zhu, Dong Yin, Jie Li","doi":"10.3390/drones7110676","DOIUrl":null,"url":null,"abstract":"Collaborative autonomous landing of a quadrotor Unmanned Aerial Vehicle (UAV) on a moving Unmanned Ground Vehicle (UGV) presents challenges due to the need for accurate real-time tracking of the UGV and the adjustment for the landing policy. To address this challenge, we propose a progressive learning framework for generating an optimal landing policy based on vision without the need of communication between the UAV and the UGV. First, we propose the Landing Vision System (LVS) to offer rapid localization and pose estimation of the UGV. Then, we design an Automatic Curriculum Learning (ACL) approach to learn the landing tasks under different conditions of UGV motions and wind interference. Specifically, we introduce a neural network-based difficulty discriminator to schedule the landing tasks according to their levels of difficulty. Our method achieves a higher landing success rate and accuracy compared with the state-of-the-art TD3 reinforcement learning algorithm.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"138 39","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7110676","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Collaborative autonomous landing of a quadrotor Unmanned Aerial Vehicle (UAV) on a moving Unmanned Ground Vehicle (UGV) presents challenges due to the need for accurate real-time tracking of the UGV and the adjustment for the landing policy. To address this challenge, we propose a progressive learning framework for generating an optimal landing policy based on vision without the need of communication between the UAV and the UGV. First, we propose the Landing Vision System (LVS) to offer rapid localization and pose estimation of the UGV. Then, we design an Automatic Curriculum Learning (ACL) approach to learn the landing tasks under different conditions of UGV motions and wind interference. Specifically, we introduce a neural network-based difficulty discriminator to schedule the landing tasks according to their levels of difficulty. Our method achieves a higher landing success rate and accuracy compared with the state-of-the-art TD3 reinforcement learning algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉的无人机- ugv协同着陆策略深度强化学习
四旋翼无人机(UAV)在移动的无人地面车辆(UGV)上的协同自主着陆,由于需要对UGV进行精确的实时跟踪和着陆策略的调整,提出了挑战。为了解决这一挑战,我们提出了一种渐进式学习框架,用于生成基于视觉的最佳着陆策略,而无需在无人机和UGV之间进行通信。首先,我们提出了着陆视觉系统(LVS)来提供UGV的快速定位和姿态估计。然后,我们设计了一种自动课程学习(ACL)方法来学习UGV在不同运动和风干扰条件下的着陆任务。具体来说,我们引入了一种基于神经网络的难度判别器,根据着陆任务的难度级别对着陆任务进行调度。与目前最先进的TD3强化学习算法相比,我们的方法实现了更高的着陆成功率和准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drones
Drones Engineering-Aerospace Engineering
CiteScore
5.60
自引率
18.80%
发文量
331
期刊最新文献
Firefighting Drone Configuration and Scheduling for Wildfire Based on Loss Estimation and Minimization Wind Tunnel Balance Measurements of Bioinspired Tails for a Fixed Wing MAV Three-Dimensional Indoor Positioning Scheme for Drone with Fingerprint-Based Deep-Learning Classifier Blockchain-Enabled Infection Sample Collection System Using Two-Echelon Drone-Assisted Mechanism Joint Trajectory Design and Resource Optimization in UAV-Assisted Caching-Enabled Networks with Finite Blocklength Transmissions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1