Flavonoids, gut microbiota, and host lipid metabolism

IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Engineering in Life Sciences Pub Date : 2023-11-13 DOI:10.1002/elsc.202300065
Miao Zhou, Jie Ma, Meng Kang, Wenjie Tang, Siting Xia, Jie Yin, Yulong Yin
{"title":"Flavonoids, gut microbiota, and host lipid metabolism","authors":"Miao Zhou,&nbsp;Jie Ma,&nbsp;Meng Kang,&nbsp;Wenjie Tang,&nbsp;Siting Xia,&nbsp;Jie Yin,&nbsp;Yulong Yin","doi":"10.1002/elsc.202300065","DOIUrl":null,"url":null,"abstract":"<p>Flavonoids are widely distributed in nature and have a variety of beneficial biological effects, including antioxidant, anti-inflammatory, and anti-obesity effects. All of these are related to gut microbiota, and flavonoids also serve as a bridge between the host and gut microbiota. Flavonoids are commonly used to modify the composition of the gut microbiota by promoting or inhibiting specific microbial species within the gut, as well as modifying their metabolites. In turn, the gut microbiota extensively metabolizes flavonoids. Hence, this reciprocal relationship between flavonoids and the gut microbiota may play a crucial role in maintaining the balance and functionality of the metabolism system. In this review, we mainly highlighted the biological effects of antioxidant, anti-inflammatory and antiobesity, and discussed the interaction between flavonoids, gut microbiota and lipid metabolism, and elaborated the potential mechanisms on host lipid metabolism.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300065","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202300065","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Flavonoids are widely distributed in nature and have a variety of beneficial biological effects, including antioxidant, anti-inflammatory, and anti-obesity effects. All of these are related to gut microbiota, and flavonoids also serve as a bridge between the host and gut microbiota. Flavonoids are commonly used to modify the composition of the gut microbiota by promoting or inhibiting specific microbial species within the gut, as well as modifying their metabolites. In turn, the gut microbiota extensively metabolizes flavonoids. Hence, this reciprocal relationship between flavonoids and the gut microbiota may play a crucial role in maintaining the balance and functionality of the metabolism system. In this review, we mainly highlighted the biological effects of antioxidant, anti-inflammatory and antiobesity, and discussed the interaction between flavonoids, gut microbiota and lipid metabolism, and elaborated the potential mechanisms on host lipid metabolism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
类黄酮、肠道微生物群和宿主脂质代谢
类黄酮广泛分布于自然界,具有多种有益的生物效应,包括抗氧化、抗炎和抗肥胖作用。所有这些都与肠道微生物群有关,类黄酮也是宿主与肠道微生物群之间的桥梁。类黄酮通常通过促进或抑制肠道内的特定微生物物种以及改变其代谢物来改变肠道微生物群的组成。反过来,肠道微生物群也会广泛代谢类黄酮。因此,类黄酮与肠道微生物群之间的这种互惠关系可能在维持代谢系统的平衡和功能方面发挥着至关重要的作用。在这篇综述中,我们主要强调了黄酮类化合物的抗氧化、抗炎和抗肥胖等生物效应,并讨论了黄酮类化合物、肠道微生物群和脂质代谢之间的相互作用,阐述了其对宿主脂质代谢的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering in Life Sciences
Engineering in Life Sciences 工程技术-生物工程与应用微生物
CiteScore
6.40
自引率
3.70%
发文量
81
审稿时长
3 months
期刊介绍: Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.
期刊最新文献
Issue Information Cover Picture: Engineering in Life Sciences 11'24 Mechanical Microvibration Device Enhancing Immunohistochemistry Efficiency Issue Information Cover Picture: Engineering in Life Sciences 10'24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1