{"title":"An Artificial Intelligence Powered Resolution Recovery Technique and Workflow to Accelerate Package Level Failure Analysis with 3D X-ray Microscopy","authors":"Syahirah Mohammad-Zulkifli, Bernice Zee, Qiu Wen, Maverique Ong, Yanjing Yang, Andriy Andreyev, Masako Terada, Allen Gu","doi":"10.31399/asm.cp.istfa2023p0443","DOIUrl":null,"url":null,"abstract":"Abstract 3D X-ray microscopy (XRM) is an effective highresolution and non-destructive tool for semiconductor package level failure analysis. One limitation with XRM is the ability to achieve high-resolution 3D images over large fields of view (FOVs) within acceptable scan times. As modern semiconductor packages become more complex, there are increasing demands for 3D X-ray instruments to image encapsulated structures and failures with high productivity and efficiency. With the challenge to precisely localize fault regions, it may require high-resolution imaging with a FOV of tens of millimeters. This may take over hundreds of hours of scans if many high-resolution but small-volume scans are performed and followed with the conventional 3D registration and stitches. In this work, a novel deep learning reconstruction method and workflow to address the issue of achieving highresolution imaging over a large FOV is reported. The AI powered technique and workflow can be used to restore the resolution over the large FOV scan with only a high-resolution and a large FOV scan. Additionally, the 3D registration and stitch workflow are automated to achieve the large FOV images with a recovered resolution comparable to the actual high-resolution scan.","PeriodicalId":20443,"journal":{"name":"Proceedings","volume":"97 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2023p0443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract 3D X-ray microscopy (XRM) is an effective highresolution and non-destructive tool for semiconductor package level failure analysis. One limitation with XRM is the ability to achieve high-resolution 3D images over large fields of view (FOVs) within acceptable scan times. As modern semiconductor packages become more complex, there are increasing demands for 3D X-ray instruments to image encapsulated structures and failures with high productivity and efficiency. With the challenge to precisely localize fault regions, it may require high-resolution imaging with a FOV of tens of millimeters. This may take over hundreds of hours of scans if many high-resolution but small-volume scans are performed and followed with the conventional 3D registration and stitches. In this work, a novel deep learning reconstruction method and workflow to address the issue of achieving highresolution imaging over a large FOV is reported. The AI powered technique and workflow can be used to restore the resolution over the large FOV scan with only a high-resolution and a large FOV scan. Additionally, the 3D registration and stitch workflow are automated to achieve the large FOV images with a recovered resolution comparable to the actual high-resolution scan.