{"title":"Sorting of persistent morphological polymorphisms links paleobiological pattern to population process","authors":"Charles Tomomi Parins-Fukuchi","doi":"10.1017/pab.2023.27","DOIUrl":null,"url":null,"abstract":"Abstract Biological variation fuels evolutionary change. Across longer timescales, however, polymorphisms at both the genomic and phenotypic levels often persist longer than would be expected under standard population genetic models such as positive selection or genetic drift. Explaining the maintenance of this variation within populations across long time spans via balancing selection has been a major triumph of theoretical population genetics and ecology. Although persistent polymorphisms can often be traced in fossil lineages over long periods through the rock record, paleobiology has had little to say about either the long-term maintenance of phenotypic variation or its macroevolutionary consequences. I explore the dynamics that occur when persistent polymorphisms maintained over long lineage durations are filtered into descendant lineages during periods of demographic upheaval that occur at speciation. I evaluate these patterns in two lineages: Ectocion , a genus of Eocene mammals, and botryocrinids, a Mississippian cladid crinoid family. Following origination, descendants are less variable than their ancestors. The patterns by which ancestral variation is sorted cannot be distinguished from drift. Maintained and accumulated polymorphisms in highly variable ancestral lineages such as Barycrinus rhombiferus Owen and Shumard, 1852 may fuel radiations as character states are sorted into multiple descendant lineages. Interrogating the conditions under which trans-specific polymorphism is either maintained or lost during periods of demographic and ecological upheaval can explain how population-level processes contribute to the emergent macroevolutionary dynamics that shape the history of life as preserved in the fossil record.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/pab.2023.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Biological variation fuels evolutionary change. Across longer timescales, however, polymorphisms at both the genomic and phenotypic levels often persist longer than would be expected under standard population genetic models such as positive selection or genetic drift. Explaining the maintenance of this variation within populations across long time spans via balancing selection has been a major triumph of theoretical population genetics and ecology. Although persistent polymorphisms can often be traced in fossil lineages over long periods through the rock record, paleobiology has had little to say about either the long-term maintenance of phenotypic variation or its macroevolutionary consequences. I explore the dynamics that occur when persistent polymorphisms maintained over long lineage durations are filtered into descendant lineages during periods of demographic upheaval that occur at speciation. I evaluate these patterns in two lineages: Ectocion , a genus of Eocene mammals, and botryocrinids, a Mississippian cladid crinoid family. Following origination, descendants are less variable than their ancestors. The patterns by which ancestral variation is sorted cannot be distinguished from drift. Maintained and accumulated polymorphisms in highly variable ancestral lineages such as Barycrinus rhombiferus Owen and Shumard, 1852 may fuel radiations as character states are sorted into multiple descendant lineages. Interrogating the conditions under which trans-specific polymorphism is either maintained or lost during periods of demographic and ecological upheaval can explain how population-level processes contribute to the emergent macroevolutionary dynamics that shape the history of life as preserved in the fossil record.