2D and 3D Metrology and Failure Analysis for High Bandwidth Memory Package by Xe and Ar Plasma-FIB

Melissa Mullen, Mark McClendon, Adam Stokes, Xiaoting Gu, Pete Carleson
{"title":"2D and 3D Metrology and Failure Analysis for High Bandwidth Memory Package by Xe and Ar Plasma-FIB","authors":"Melissa Mullen, Mark McClendon, Adam Stokes, Xiaoting Gu, Pete Carleson","doi":"10.31399/asm.cp.istfa2023p0370","DOIUrl":null,"url":null,"abstract":"Abstract Continued advancements in the architecture of 3D packaging have increased the challenges in fault isolation and failure analysis (FA), often requiring complex correlative workflows and multiple inference-based methods before targeted root cause analysis (RCA) can be performed. Furthermore, 3D package components such as through-silicon-vias (TSVs) and micro-bumps require sub-surface structural characterization and metrology to aid in process monitoring and development throughout fabrication and integration. Package road-mapping has also called for increased die stacking with decreased pitch, TSV size, and die thickness, and thus requires increased accuracy and precision of various stateof- the-art analytical techniques in the near future. Physical failure analysis (PFA), process monitoring, and process development will therefore depend on reliable, high-resolution data directly measured at the region of interest (ROI) to meet the complexity and scaling challenges. This paper explores the successful application of plasma-FIB (PFIB)/SEM techniques in 2D and 3D regimes and introduces diagonal serial sectioning at package scales as a novel approach for PFA and metrology. Both 2D and 3D analysis will be demonstrated in a high bandwidth memory (HBM) package case-study which can be applied more broadly in 3D packaging.","PeriodicalId":20443,"journal":{"name":"Proceedings","volume":"99 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2023p0370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Continued advancements in the architecture of 3D packaging have increased the challenges in fault isolation and failure analysis (FA), often requiring complex correlative workflows and multiple inference-based methods before targeted root cause analysis (RCA) can be performed. Furthermore, 3D package components such as through-silicon-vias (TSVs) and micro-bumps require sub-surface structural characterization and metrology to aid in process monitoring and development throughout fabrication and integration. Package road-mapping has also called for increased die stacking with decreased pitch, TSV size, and die thickness, and thus requires increased accuracy and precision of various stateof- the-art analytical techniques in the near future. Physical failure analysis (PFA), process monitoring, and process development will therefore depend on reliable, high-resolution data directly measured at the region of interest (ROI) to meet the complexity and scaling challenges. This paper explores the successful application of plasma-FIB (PFIB)/SEM techniques in 2D and 3D regimes and introduces diagonal serial sectioning at package scales as a novel approach for PFA and metrology. Both 2D and 3D analysis will be demonstrated in a high bandwidth memory (HBM) package case-study which can be applied more broadly in 3D packaging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体fib对高带宽存储封装的二维和三维测量及失效分析
3D封装架构的不断进步增加了故障隔离和故障分析(FA)方面的挑战,在执行目标根本原因分析(RCA)之前,通常需要复杂的相关工作流程和多种基于推理的方法。此外,3D封装组件(如硅通孔(tsv)和微凸点)需要地下结构表征和计量,以帮助在整个制造和集成过程中进行过程监控和开发。封装路径映射也要求增加与减小间距,TSV尺寸和模具厚度的模具堆叠,因此需要在不久的将来提高各种最先进的分析技术的准确性和精度。因此,物理故障分析(PFA)、过程监控和过程开发将依赖于在感兴趣区域(ROI)直接测量的可靠、高分辨率数据,以满足复杂性和可扩展性的挑战。本文探讨了等离子体fib (PFIB)/SEM技术在二维和三维领域的成功应用,并介绍了在封装尺度上对角连续切片作为PFA和计量的新方法。2D和3D分析将在高带宽存储器(HBM)封装案例研究中进行演示,该案例研究可以更广泛地应用于3D封装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
11 weeks
期刊最新文献
Prevalence of Secondary Hyperparathyroidism in Hemo- Dialysis Patients Mean Rise in Hemoglobin After Intravenous Iron Therapy in Children with Iron Deficiency Anemia Mean Rise in Hemoglobin After Intravenous Iron Therapy in Children with Iron Deficiency Anemia Estimation of Rotavirus Associated Diarrheal Disease Burden Amongst Primary School Children of Sindh Functional Outcome of Shaft of Femur Fracture Fixation with Elastic Nail in Children Between 05 to 10 Years of Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1