A New Matrix Statistic for the Hausman Endogeneity Test under Heteroskedasticity

IF 1.1 Q3 ECONOMICS Econometrics Pub Date : 2023-10-10 DOI:10.3390/econometrics11040023
Alecos Papadopoulos
{"title":"A New Matrix Statistic for the Hausman Endogeneity Test under Heteroskedasticity","authors":"Alecos Papadopoulos","doi":"10.3390/econometrics11040023","DOIUrl":null,"url":null,"abstract":"We derive a new matrix statistic for the Hausman test for endogeneity in cross-sectional Instrumental Variables estimation, that incorporates heteroskedasticity in a natural way and does not use a generalized inverse. A Monte Carlo study examines the performance of the statistic for different heteroskedasticity-robust variance estimators and different skedastic situations. We find that the test statistic performs well as regards empirical size in almost all cases; however, as regards empirical power, how one corrects for heteroskedasticity matters. We also compare its performance with that of the Wald statistic from the augmented regression setup that is often used for the endogeneity test, and we find that the choice between them may depend on the desired significance level of the test.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics11040023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We derive a new matrix statistic for the Hausman test for endogeneity in cross-sectional Instrumental Variables estimation, that incorporates heteroskedasticity in a natural way and does not use a generalized inverse. A Monte Carlo study examines the performance of the statistic for different heteroskedasticity-robust variance estimators and different skedastic situations. We find that the test statistic performs well as regards empirical size in almost all cases; however, as regards empirical power, how one corrects for heteroskedasticity matters. We also compare its performance with that of the Wald statistic from the augmented regression setup that is often used for the endogeneity test, and we find that the choice between them may depend on the desired significance level of the test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异方差下Hausman内生性检验的一种新的矩阵统计量
我们为横截面工具变量估计中的内生性Hausman检验导出了一个新的矩阵统计量,它以自然的方式包含异方差,而不使用广义逆。蒙特卡罗研究检验了统计量在不同异方差-稳健方差估计器和不同偏差情况下的性能。我们发现,在几乎所有情况下,检验统计量在经验规模方面表现良好;然而,就经验力量而言,如何校正异方差很重要。我们还将其性能与通常用于内生性检验的增强回归设置的Wald统计量的性能进行了比较,我们发现它们之间的选择可能取决于测试的期望显著性水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
期刊最新文献
Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality Signs of Fluctuations in Energy Prices and Energy Stock-Market Volatility in Brazil and in the US Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach Is It Sufficient to Select the Optimal Class Number Based Only on Information Criteria in Fixed- and Random-Parameter Latent Class Discrete Choice Modeling Approaches? Instrumental Variable Method for Regularized Estimation in Generalized Linear Measurement Error Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1