Pub Date : 2024-09-04DOI: 10.3390/econometrics12030025
Szabolcs Blazsek, William M. Dos Santos, Andreco S. Edwards
The COVID-19 (coronavirus disease of 2019) pandemic is over; however, the probability of such a pandemic is about 2% in any year. There are international negotiations among almost 200 countries at the World Health Organization (WHO) concerning a global plan to deal with the next pandemic on the scale of COVID-19, known as “Disease X”. We develop a nonlinear panel quasi-vector autoregressive (PQVAR) model for the multivariate t-distribution with dynamic unobserved effects, which can be used for out-of-sample forecasts of causes of death counts in the United States (US) when a new global pandemic starts. We use panel data from the Centers for Disease Control and Prevention (CDC) for the cross section of all states of the United States (US) from March 2020 to September 2022 regarding all death counts of (i) COVID-19 deaths, (ii) deaths that medically may be related to COVID-19, and (iii) the remaining causes of death. We compare the t-PQVAR model with its special cases, the PVAR moving average (PVARMA), and PVAR. The t-PQVAR model provides robust evidence on dynamic interactions among (i), (ii), and (iii). The t-PQVAR model may be used for out-of-sample forecasting purposes at the outbreak of a future “Disease X” pandemic.
{"title":"Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality","authors":"Szabolcs Blazsek, William M. Dos Santos, Andreco S. Edwards","doi":"10.3390/econometrics12030025","DOIUrl":"https://doi.org/10.3390/econometrics12030025","url":null,"abstract":"The COVID-19 (coronavirus disease of 2019) pandemic is over; however, the probability of such a pandemic is about 2% in any year. There are international negotiations among almost 200 countries at the World Health Organization (WHO) concerning a global plan to deal with the next pandemic on the scale of COVID-19, known as “Disease X”. We develop a nonlinear panel quasi-vector autoregressive (PQVAR) model for the multivariate t-distribution with dynamic unobserved effects, which can be used for out-of-sample forecasts of causes of death counts in the United States (US) when a new global pandemic starts. We use panel data from the Centers for Disease Control and Prevention (CDC) for the cross section of all states of the United States (US) from March 2020 to September 2022 regarding all death counts of (i) COVID-19 deaths, (ii) deaths that medically may be related to COVID-19, and (iii) the remaining causes of death. We compare the t-PQVAR model with its special cases, the PVAR moving average (PVARMA), and PVAR. The t-PQVAR model provides robust evidence on dynamic interactions among (i), (ii), and (iii). The t-PQVAR model may be used for out-of-sample forecasting purposes at the outbreak of a future “Disease X” pandemic.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"6 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.3390/econometrics12030024
Gabriel Arquelau Pimenta Rodrigues, André Luiz Marques Serrano, Gabriela Mayumi Saiki, Matheus Noschang de Oliveira, Guilherme Fay Vergara, Pedro Augusto Giacomelli Fernandes, Vinícius Pereira Gonçalves, Clóvis Neumann
Volatility reflects the degree of variation in a time series, and a measurement of the stock performance in the energy sector can help one understand the pattern of fluctuations within this industry, as well as the factors that influence it. One of these factors could be the COVID-19 pandemic, which led to extreme volatility within the stock market in several economic sectors. It is essential to understand this regime of volatility so that robust financial strategies can be adopted to handle it. This study used stock data from the Yahoo! Finance API and data from the energy-price database from the US Energy Information Administration to conduct a comparative analysis of the volatility in the energy sector in Brazil and in the United States, as well as of the energy prices in California. The volatility in these time series were modeled using GARCH. The stock volatility regimes, both before and after COVID-19, were identified with a Markov switching model; the spillover index between the energy markets in the USA and in Brazil was evaluated with the Diebold–Yilmaz index; and the causality between the energy stock price and the energy prices was measured with the Granger causality test. The findings of this study show that (i) the volatility regime introduced by COVID-19 is still prevalent in Brazil and in the USA, (ii) the changes in the energy market in the US affect the Brazilian market significantly more than the reverse, and (iii) there is a causality relationship between the energy stock markets and the energy prices in California. These results may assist in the achievement of effective regulation and economic planning, while also supporting better market interventions. Also, acknowledging the persistent COVID-19-induced volatility can help with developing strategies for future crisis resilience.
{"title":"Signs of Fluctuations in Energy Prices and Energy Stock-Market Volatility in Brazil and in the US","authors":"Gabriel Arquelau Pimenta Rodrigues, André Luiz Marques Serrano, Gabriela Mayumi Saiki, Matheus Noschang de Oliveira, Guilherme Fay Vergara, Pedro Augusto Giacomelli Fernandes, Vinícius Pereira Gonçalves, Clóvis Neumann","doi":"10.3390/econometrics12030024","DOIUrl":"https://doi.org/10.3390/econometrics12030024","url":null,"abstract":"Volatility reflects the degree of variation in a time series, and a measurement of the stock performance in the energy sector can help one understand the pattern of fluctuations within this industry, as well as the factors that influence it. One of these factors could be the COVID-19 pandemic, which led to extreme volatility within the stock market in several economic sectors. It is essential to understand this regime of volatility so that robust financial strategies can be adopted to handle it. This study used stock data from the Yahoo! Finance API and data from the energy-price database from the US Energy Information Administration to conduct a comparative analysis of the volatility in the energy sector in Brazil and in the United States, as well as of the energy prices in California. The volatility in these time series were modeled using GARCH. The stock volatility regimes, both before and after COVID-19, were identified with a Markov switching model; the spillover index between the energy markets in the USA and in Brazil was evaluated with the Diebold–Yilmaz index; and the causality between the energy stock price and the energy prices was measured with the Granger causality test. The findings of this study show that (i) the volatility regime introduced by COVID-19 is still prevalent in Brazil and in the USA, (ii) the changes in the energy market in the US affect the Brazilian market significantly more than the reverse, and (iii) there is a causality relationship between the energy stock markets and the energy prices in California. These results may assist in the achievement of effective regulation and economic planning, while also supporting better market interventions. Also, acknowledging the persistent COVID-19-induced volatility can help with developing strategies for future crisis resilience.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"61 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.3390/econometrics12030023
Phuc Trong Ho, Michael Burton, Atakelty Hailu, Chunbo Ma
This study estimates transient and persistent technical efficiencies (TEs) using a generalized true random-effects (GTRE) model. We estimate the GTRE model using maximum likelihood and Bayesian estimation methods, then compare it to three simpler models nested within it to evaluate the robustness of our estimates. We use a panel data set of 945 observations collected from 344 rice farming households in Vietnam’s Mekong River Delta. The results indicate that the GTRE model is more appropriate than the restricted models for understanding heterogeneity and inefficiency in rice production. The mean estimate of overall technical efficiency is 0.71 on average, with transient rather than persistent inefficiency being the dominant component. This suggests that rice farmers could increase output substantially and would benefit from policies that pay more attention to addressing short-term inefficiency issues.
{"title":"Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach","authors":"Phuc Trong Ho, Michael Burton, Atakelty Hailu, Chunbo Ma","doi":"10.3390/econometrics12030023","DOIUrl":"https://doi.org/10.3390/econometrics12030023","url":null,"abstract":"This study estimates transient and persistent technical efficiencies (TEs) using a generalized true random-effects (GTRE) model. We estimate the GTRE model using maximum likelihood and Bayesian estimation methods, then compare it to three simpler models nested within it to evaluate the robustness of our estimates. We use a panel data set of 945 observations collected from 344 rice farming households in Vietnam’s Mekong River Delta. The results indicate that the GTRE model is more appropriate than the restricted models for understanding heterogeneity and inefficiency in rice production. The mean estimate of overall technical efficiency is 0.71 on average, with transient rather than persistent inefficiency being the dominant component. This suggests that rice farmers could increase output substantially and would benefit from policies that pay more attention to addressing short-term inefficiency issues.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"112 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.3390/econometrics12030022
Péter Czine, Péter Balogh, Zsanett Blága, Zoltán Szabó, Réka Szekeres, Stephane Hess, Béla Juhász
Heterogeneity in preferences can be addressed through various discrete choice modeling approaches. The random-parameter latent class (RLC) approach offers a desirable alternative for analysts due to its advantageous properties of separating classes with different preferences and capturing the remaining heterogeneity within classes by including random parameters. For latent class specifications, however, more empirical evidence on the optimal number of classes to consider is needed in order to develop a more objective set of criteria. To investigate this question, we tested cases with different class numbers (for both fixed- and random-parameter latent class modeling) by analyzing data from a discrete choice experiment conducted in 2021 (examined preferences regarding COVID-19 vaccines). We compared models using commonly used indicators such as the Bayesian information criterion, and we took into account, among others, a seemingly simple but often overlooked indicator such as the ratio of significant parameter estimates. Based on our results, it is not sufficient to decide on the optimal number of classes in the latent class modeling based on only information criteria. We considered aspects such as the ratio of significant parameter estimates (it may be interesting to examine this both between and within specifications to find out which model type and class number has the most balanced ratio); the validity of the coefficients obtained (focusing on whether the conclusions are consistent with our theoretical model); whether including random parameters is justified (finding a balance between the complexity of the model and its information content, i.e., to examine when (and to what extent) the introduction of within-class heterogeneity is relevant); and the distributions of MRS calculations (since they often function as a direct measure of preferences, it is necessary to test how consistent the distributions of specifications with different class numbers are (if they are highly, i.e., relatively stable in explaining consumer preferences, it is probably worth putting more emphasis on the aspects mentioned above when choosing a model)). The results of this research raise further questions that should be addressed by further model testing in the future.
{"title":"Is It Sufficient to Select the Optimal Class Number Based Only on Information Criteria in Fixed- and Random-Parameter Latent Class Discrete Choice Modeling Approaches?","authors":"Péter Czine, Péter Balogh, Zsanett Blága, Zoltán Szabó, Réka Szekeres, Stephane Hess, Béla Juhász","doi":"10.3390/econometrics12030022","DOIUrl":"https://doi.org/10.3390/econometrics12030022","url":null,"abstract":"Heterogeneity in preferences can be addressed through various discrete choice modeling approaches. The random-parameter latent class (RLC) approach offers a desirable alternative for analysts due to its advantageous properties of separating classes with different preferences and capturing the remaining heterogeneity within classes by including random parameters. For latent class specifications, however, more empirical evidence on the optimal number of classes to consider is needed in order to develop a more objective set of criteria. To investigate this question, we tested cases with different class numbers (for both fixed- and random-parameter latent class modeling) by analyzing data from a discrete choice experiment conducted in 2021 (examined preferences regarding COVID-19 vaccines). We compared models using commonly used indicators such as the Bayesian information criterion, and we took into account, among others, a seemingly simple but often overlooked indicator such as the ratio of significant parameter estimates. Based on our results, it is not sufficient to decide on the optimal number of classes in the latent class modeling based on only information criteria. We considered aspects such as the ratio of significant parameter estimates (it may be interesting to examine this both between and within specifications to find out which model type and class number has the most balanced ratio); the validity of the coefficients obtained (focusing on whether the conclusions are consistent with our theoretical model); whether including random parameters is justified (finding a balance between the complexity of the model and its information content, i.e., to examine when (and to what extent) the introduction of within-class heterogeneity is relevant); and the distributions of MRS calculations (since they often function as a direct measure of preferences, it is necessary to test how consistent the distributions of specifications with different class numbers are (if they are highly, i.e., relatively stable in explaining consumer preferences, it is probably worth putting more emphasis on the aspects mentioned above when choosing a model)). The results of this research raise further questions that should be addressed by further model testing in the future.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"34 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.3390/econometrics12030021
Lin Xue, Liqun Wang
Regularized regression methods have attracted much attention in the literature, mainly due to its application in high-dimensional variable selection problems. Most existing regularization methods assume that the predictors are directly observed and precisely measured. It is well known that in a low-dimensional regression model if some covariates are measured with error, then the naive estimators that ignore the measurement error are biased and inconsistent. However, the impact of measurement error in regularized estimation procedures is not clear. For example, it is known that the ordinary least squares estimate of the regression coefficient in a linear model is attenuated towards zero and, on the other hand, the variance of the observed surrogate predictor is inflated. Therefore, it is unclear how the interaction of these two factors affects the selection outcome. To correct for the measurement error effects, some researchers assume that the measurement error covariance matrix is known or can be estimated using external data. In this paper, we propose the regularized instrumental variable method for generalized linear measurement error models. We show that the proposed approach yields a consistent variable selection procedure and root-n consistent parameter estimators. Extensive finite sample simulation studies show that the proposed method performs satisfactorily in both linear and generalized linear models. A real data example is provided to further demonstrate the usage of the method.
正则化回归方法在文献中备受关注,主要是由于它在高维变量选择问题中的应用。现有的正则化方法大多假定预测因子是可以直接观测和精确测量的。众所周知,在低维回归模型中,如果某些协变量的测量存在误差,那么忽略测量误差的天真估计值就会出现偏差和不一致。然而,测量误差对正则化估计程序的影响并不明确。例如,众所周知,线性模型中回归系数的普通最小二乘法估计值会向零衰减,而另一方面,观测到的替代预测因子的方差会被夸大。因此,目前还不清楚这两个因素的交互作用如何影响选择结果。为了校正测量误差效应,一些研究者假定测量误差协方差矩阵是已知的,或者可以利用外部数据进行估计。在本文中,我们提出了广义线性测量误差模型的正则化工具变量方法。我们证明,所提出的方法能产生一致的变量选择程序和根 n 一致的参数估计值。广泛的有限样本模拟研究表明,所提出的方法在线性模型和广义线性模型中的表现都令人满意。我们还提供了一个真实数据示例,以进一步证明该方法的用途。
{"title":"Instrumental Variable Method for Regularized Estimation in Generalized Linear Measurement Error Models","authors":"Lin Xue, Liqun Wang","doi":"10.3390/econometrics12030021","DOIUrl":"https://doi.org/10.3390/econometrics12030021","url":null,"abstract":"Regularized regression methods have attracted much attention in the literature, mainly due to its application in high-dimensional variable selection problems. Most existing regularization methods assume that the predictors are directly observed and precisely measured. It is well known that in a low-dimensional regression model if some covariates are measured with error, then the naive estimators that ignore the measurement error are biased and inconsistent. However, the impact of measurement error in regularized estimation procedures is not clear. For example, it is known that the ordinary least squares estimate of the regression coefficient in a linear model is attenuated towards zero and, on the other hand, the variance of the observed surrogate predictor is inflated. Therefore, it is unclear how the interaction of these two factors affects the selection outcome. To correct for the measurement error effects, some researchers assume that the measurement error covariance matrix is known or can be estimated using external data. In this paper, we propose the regularized instrumental variable method for generalized linear measurement error models. We show that the proposed approach yields a consistent variable selection procedure and root-n consistent parameter estimators. Extensive finite sample simulation studies show that the proposed method performs satisfactorily in both linear and generalized linear models. A real data example is provided to further demonstrate the usage of the method.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"11 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.3390/econometrics12030020
Frederico Caeiro, Mina Norouzirad
Non-negative distributions are important tools in various fields. Given the importance of achieving a good fit, the literature offers hundreds of different models, from the very simple to the highly flexible. In this paper, we consider the power–Pareto model, which is defined by its quantile function. This distribution has three parameters, allowing the model to take different shapes, including symmetrical and left- and right-skewed. We provide different distributional characteristics and discuss parameter estimation. In addition to the already-known Maximum Likelihood and Least Squares of the logarithm of the order statistics estimation methods, we propose several additional methods. A simulation study and an application to two datasets are conducted to illustrate the performance of the estimation methods.
{"title":"Comparing Estimation Methods for the Power–Pareto Distribution","authors":"Frederico Caeiro, Mina Norouzirad","doi":"10.3390/econometrics12030020","DOIUrl":"https://doi.org/10.3390/econometrics12030020","url":null,"abstract":"Non-negative distributions are important tools in various fields. Given the importance of achieving a good fit, the literature offers hundreds of different models, from the very simple to the highly flexible. In this paper, we consider the power–Pareto model, which is defined by its quantile function. This distribution has three parameters, allowing the model to take different shapes, including symmetrical and left- and right-skewed. We provide different distributional characteristics and discuss parameter estimation. In addition to the already-known Maximum Likelihood and Least Squares of the logarithm of the order statistics estimation methods, we propose several additional methods. A simulation study and an application to two datasets are conducted to illustrate the performance of the estimation methods.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"152 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.3390/econometrics12030019
Gabriela Dobrotă, Alina Daniela Voda
Public debt is determined by borrowings undertaken by a government to finance its short- or long-term financial needs and to ensure that macroeconomic objectives are met within budgetary constraints. In Romania, public debt has been on an upward trajectory, a trend that has been further exacerbated in recent years by the COVID-19 pandemic. Additionally, a significant non-economic event influencing Romania’s public debt is the war in Ukraine. To analyze this, a stochastic debt sustainability analysis was conducted, incorporating the unique characteristics of Romania’s emerging market into the research methodology. The projections focused on achieving satisfactory results by following two lines of research. The first direction involved developing four scenarios to assess the risks presented by macroeconomic shocks. Particular emphasis was placed on an unusual negative shock, specifically the war in Ukraine, with forecasts indicating that the debt-to-GDP ratio could reach 102% by 2026. However, if policymakers implement discretionary measures, this level could be contained below 88%. The second direction of research aimed to establish the maximum safe limit of public debt for Romania, which was determined to be 70%. This threshold would allow the emerging economy to manage a reasonable level of risk without requiring excessive fiscal efforts to maintain long-term stability.
{"title":"Stochastic Debt Sustainability Analysis in Romania in the Context of the War in Ukraine","authors":"Gabriela Dobrotă, Alina Daniela Voda","doi":"10.3390/econometrics12030019","DOIUrl":"https://doi.org/10.3390/econometrics12030019","url":null,"abstract":"Public debt is determined by borrowings undertaken by a government to finance its short- or long-term financial needs and to ensure that macroeconomic objectives are met within budgetary constraints. In Romania, public debt has been on an upward trajectory, a trend that has been further exacerbated in recent years by the COVID-19 pandemic. Additionally, a significant non-economic event influencing Romania’s public debt is the war in Ukraine. To analyze this, a stochastic debt sustainability analysis was conducted, incorporating the unique characteristics of Romania’s emerging market into the research methodology. The projections focused on achieving satisfactory results by following two lines of research. The first direction involved developing four scenarios to assess the risks presented by macroeconomic shocks. Particular emphasis was placed on an unusual negative shock, specifically the war in Ukraine, with forecasts indicating that the debt-to-GDP ratio could reach 102% by 2026. However, if policymakers implement discretionary measures, this level could be contained below 88%. The second direction of research aimed to establish the maximum safe limit of public debt for Romania, which was determined to be 70%. This threshold would allow the emerging economy to manage a reasonable level of risk without requiring excessive fiscal efforts to maintain long-term stability.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"32 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the study we explore an oligopoly market for equilibrium and stability based on statistical data with the help of response functions rather than payoff maximization. To achieve this, we extend the concept of coupled fixed points to triple fixed points. We propose a new model that leads to generalized triple fixed points. We present a possible application of the generalized tripled fixed point model to the study of market equilibrium in an oligopolistic market dominated by three major competitors. The task of maximizing the payout functions of the three players is modified by the concept of generalized tripled fixed points of response functions. The presented model for generalized tripled fixed points of response functions is equivalent to Cournot payoff maximization, provided that the market price function and the three players’ cost functions are differentiable. Furthermore, we demonstrate that the contractive condition corresponds to the second-order constraints in payoff maximization. Moreover, the model under consideration is stable in the sense that it ensures the stability of the consecutive production process, as opposed to the payoff maximization model with which the market equilibrium may not be stable. A possible gap in the applications of the classical technique for maximization of the payoff functions is that the price function in the market may not be known, and any approximation of it may lead to the solution of a task different from the one generated by the market. We use empirical data from Bulgaria’s beer market to illustrate the created model. The statistical data gives fair information on how the players react without knowing the price function, their cost function, or their aims towards a specific market. We present two models based on the real data and their approximations, respectively. The two models, although different, show similar behavior in terms of time and the stability of the market equilibrium. Thus, the notion of response functions and tripled fixed points seems to present a justified way of modeling market processes in oligopoly markets when searching whether the market has reached equilibrium and if this equilibrium is unique and stable in time
{"title":"Investigation of Equilibrium in Oligopoly Markets with the Help of Tripled Fixed Points in Banach Spaces","authors":"Atanas Ilchev, Vanya Ivanova, Hristina Kulina, Polina Yaneva, Boyan Zlatanov","doi":"10.3390/econometrics12020018","DOIUrl":"https://doi.org/10.3390/econometrics12020018","url":null,"abstract":"In the study we explore an oligopoly market for equilibrium and stability based on statistical data with the help of response functions rather than payoff maximization. To achieve this, we extend the concept of coupled fixed points to triple fixed points. We propose a new model that leads to generalized triple fixed points. We present a possible application of the generalized tripled fixed point model to the study of market equilibrium in an oligopolistic market dominated by three major competitors. The task of maximizing the payout functions of the three players is modified by the concept of generalized tripled fixed points of response functions. The presented model for generalized tripled fixed points of response functions is equivalent to Cournot payoff maximization, provided that the market price function and the three players’ cost functions are differentiable. Furthermore, we demonstrate that the contractive condition corresponds to the second-order constraints in payoff maximization. Moreover, the model under consideration is stable in the sense that it ensures the stability of the consecutive production process, as opposed to the payoff maximization model with which the market equilibrium may not be stable. A possible gap in the applications of the classical technique for maximization of the payoff functions is that the price function in the market may not be known, and any approximation of it may lead to the solution of a task different from the one generated by the market. We use empirical data from Bulgaria’s beer market to illustrate the created model. The statistical data gives fair information on how the players react without knowing the price function, their cost function, or their aims towards a specific market. We present two models based on the real data and their approximations, respectively. The two models, although different, show similar behavior in terms of time and the stability of the market equilibrium. Thus, the notion of response functions and tripled fixed points seems to present a justified way of modeling market processes in oligopoly markets when searching whether the market has reached equilibrium and if this equilibrium is unique and stable in time","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"11 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.3390/econometrics12020015
Guglielmo Maria Caporale, Luis Alberiko Gil-Alana
This paper introduces a new modelling approach that incorporates nonlinear, exponential deterministic terms into a fractional integration framework. The proposed model is based on a specific test on fractional integration that is more general than the standard methods, which allow for only linear trends.. Its limiting distribution is standard normal, and Monte Carlo simulations show that it performs well in finite samples. Three empirical examples confirm that the suggested specification captures the properties of the data adequately.
{"title":"Exponential Time Trends in a Fractional Integration Model","authors":"Guglielmo Maria Caporale, Luis Alberiko Gil-Alana","doi":"10.3390/econometrics12020015","DOIUrl":"https://doi.org/10.3390/econometrics12020015","url":null,"abstract":"This paper introduces a new modelling approach that incorporates nonlinear, exponential deterministic terms into a fractional integration framework. The proposed model is based on a specific test on fractional integration that is more general than the standard methods, which allow for only linear trends.. Its limiting distribution is standard normal, and Monte Carlo simulations show that it performs well in finite samples. Three empirical examples confirm that the suggested specification captures the properties of the data adequately.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"27 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.3390/econometrics12020014
Manel Soury
Over the years, oil prices and financial stock markets have always had a complex relationship. This paper analyzes the interactions and co-movements between the oil market (WTI crude oil) and two major stock markets in Europe and the US (the Euro Stoxx 50 and the SP500) for the period from 1990 to 2023. For that, I use both the time-varying and the Markov copula models. The latter one represents an extension of the former one, where the constant term of the dynamic dependence parameter is driven by a hidden two-state first-order Markov chain. It is also called the dynamic regime-switching (RS) copula model. To estimate the model, I use the inference function for margins (IFM) method together with Kim’s filter for the Markov switching process. The marginals of the returns are modeled by the GARCH and GAS models. Empirical results show that the RS copula model seems adequate to measure and evaluate the time-varying and non-linear dependence structure. Two persistent regimes of high and low dependency have been detected. There was a jump in the co-movements of both pairs during high regimes associated with instability and crises. In addition, the extreme dependence between crude oil and US/European stock markets is time-varying but also asymmetric, as indicated by the SJC copula. The correlation in the lower tail is higher than that in the upper. Hence, oil and stock returns are more closely joined and tend to co-move more closely together in bullish periods than in bearish periods. Finally, the dependence between WTI crude oil and the SP500 stock index seems to be more affected by exogenous shocks and instability than the oil and European stock markets.
{"title":"Financial and Oil Market’s Co-Movements by a Regime-Switching Copula","authors":"Manel Soury","doi":"10.3390/econometrics12020014","DOIUrl":"https://doi.org/10.3390/econometrics12020014","url":null,"abstract":"Over the years, oil prices and financial stock markets have always had a complex relationship. This paper analyzes the interactions and co-movements between the oil market (WTI crude oil) and two major stock markets in Europe and the US (the Euro Stoxx 50 and the SP500) for the period from 1990 to 2023. For that, I use both the time-varying and the Markov copula models. The latter one represents an extension of the former one, where the constant term of the dynamic dependence parameter is driven by a hidden two-state first-order Markov chain. It is also called the dynamic regime-switching (RS) copula model. To estimate the model, I use the inference function for margins (IFM) method together with Kim’s filter for the Markov switching process. The marginals of the returns are modeled by the GARCH and GAS models. Empirical results show that the RS copula model seems adequate to measure and evaluate the time-varying and non-linear dependence structure. Two persistent regimes of high and low dependency have been detected. There was a jump in the co-movements of both pairs during high regimes associated with instability and crises. In addition, the extreme dependence between crude oil and US/European stock markets is time-varying but also asymmetric, as indicated by the SJC copula. The correlation in the lower tail is higher than that in the upper. Hence, oil and stock returns are more closely joined and tend to co-move more closely together in bullish periods than in bearish periods. Finally, the dependence between WTI crude oil and the SP500 stock index seems to be more affected by exogenous shocks and instability than the oil and European stock markets.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"40 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141146197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}