Mssgan: Enforcing Multiple Generators to Learn Multiple Subspaces to Avoid the Mode Collapse

IF 4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine learning and knowledge extraction Pub Date : 2023-10-10 DOI:10.3390/make5040073
Miguel S. Soriano-Garcia, Ricardo Sevilla-Escoboza, Angel Garcia-Pedrero
{"title":"Mssgan: Enforcing Multiple Generators to Learn Multiple Subspaces to Avoid the Mode Collapse","authors":"Miguel S. Soriano-Garcia, Ricardo Sevilla-Escoboza, Angel Garcia-Pedrero","doi":"10.3390/make5040073","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks are powerful generative models that are used in different areas and with multiple applications. However, this type of model has a training problem called mode collapse. This problem causes the generator to not learn the complete distribution of the data with which it is trained. To force the network to learn the entire data distribution, MSSGAN is introduced. This model has multiple generators and distributes the training data in multiple subspaces, where each generator is enforced to learn only one of the groups with the help of a classifier. We demonstrate that our model performs better on the FID and Sample Distribution metrics compared to previous models to avoid mode collapse. Experimental results show how each of the generators learns different information and, in turn, generates satisfactory quality samples.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"77 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make5040073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Generative Adversarial Networks are powerful generative models that are used in different areas and with multiple applications. However, this type of model has a training problem called mode collapse. This problem causes the generator to not learn the complete distribution of the data with which it is trained. To force the network to learn the entire data distribution, MSSGAN is introduced. This model has multiple generators and distributes the training data in multiple subspaces, where each generator is enforced to learn only one of the groups with the help of a classifier. We demonstrate that our model performs better on the FID and Sample Distribution metrics compared to previous models to avoid mode collapse. Experimental results show how each of the generators learns different information and, in turn, generates satisfactory quality samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强制多个生成器学习多个子空间以避免模式崩溃
生成对抗网络是一种强大的生成模型,用于不同的领域和多种应用。然而,这种类型的模型有一个训练问题,称为模式崩溃。这个问题导致生成器无法学习训练数据的完整分布。迫使网络学习整个数据分布,MSSGAN介绍。该模型具有多个生成器,并将训练数据分布在多个子空间中,其中每个生成器在分类器的帮助下强制只学习其中一个组。我们证明,与以前的模型相比,我们的模型在FID和样本分布指标上表现更好,以避免模式崩溃。实验结果表明,每个生成器如何学习不同的信息,从而产生令人满意的质量样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Knowledge Graph Extraction of Business Interactions from News Text for Business Networking Analysis Machine Learning for an Enhanced Credit Risk Analysis: A Comparative Study of Loan Approval Prediction Models Integrating Mental Health Data A Data Mining Approach for Health Transport Demand Predicting Wind Comfort in an Urban Area: A Comparison of a Regression- with a Classification-CNN for General Wind Rose Statistics An Evaluative Baseline for Sentence-Level Semantic Division
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1