Optimal economic-emission load dispatch in microgrid incorporating renewable energy sources by golden jackal optimization (GJO) and Mexican Axolotl optimization (MAO)
{"title":"Optimal economic-emission load dispatch in microgrid incorporating renewable energy sources by golden jackal optimization (GJO) and Mexican Axolotl optimization (MAO)","authors":"Ramesh Ramachandran, Shanmugapriya Kannan, Senthil Kumaran Ganesan, Balamurugan Annamalai","doi":"10.1177/0958305x231204605","DOIUrl":null,"url":null,"abstract":"This article proposes the use of hybrid technique to achieve balanced and compromised solution among the generation cost and the emission of pollutants. Microgrids (MGs) are the restricted power energy system that transmitted, generated, and distributed. The renewable energy sources (RESs) are used in their fullest extent. Advantages of MG include reducing cost and transmission losses. Operated in different modes like wind turbine (WT), microturbine (MT) and fuel cell (FC). The proposed technique used to execute the golden jackal optimization (GJO) and Mexican Axolotl optimization (MAO) named as GJO–MAO technique. The objective of the technique is to solve dissimilar optimization issues in MG reduces the computational cost and maximize performance. The objectives of economic dispatch are based on fractional scheduling and restricted environment. Three different scenarios, low-voltage MG system are investigated. GJO–MAO techniques used to optimize various issues on MG by using renewable energy. The proposed technique performance is done in the MATLAB. When the time-of-use (TOU) energy market price strategy with the fixed pricing approach, the economic dispatch is calculated by time-of-use electricity market pricing method, generating cost decreases by 18.5%, 13.5% if the FP-related combined economic emission dispatch (CEED) is examined, and 15% after evaluating the environmental-constrained-economic-dispatch (ECED). The MG producing cost targets for ECED and ECD are according to renewable energy sources. The best and most system is used for finding a fair compromise between the cost of generating and emission. The smallest values of implementation time and standard deviation of superiority and robustness are achieved.","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":"9 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0958305x231204605","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes the use of hybrid technique to achieve balanced and compromised solution among the generation cost and the emission of pollutants. Microgrids (MGs) are the restricted power energy system that transmitted, generated, and distributed. The renewable energy sources (RESs) are used in their fullest extent. Advantages of MG include reducing cost and transmission losses. Operated in different modes like wind turbine (WT), microturbine (MT) and fuel cell (FC). The proposed technique used to execute the golden jackal optimization (GJO) and Mexican Axolotl optimization (MAO) named as GJO–MAO technique. The objective of the technique is to solve dissimilar optimization issues in MG reduces the computational cost and maximize performance. The objectives of economic dispatch are based on fractional scheduling and restricted environment. Three different scenarios, low-voltage MG system are investigated. GJO–MAO techniques used to optimize various issues on MG by using renewable energy. The proposed technique performance is done in the MATLAB. When the time-of-use (TOU) energy market price strategy with the fixed pricing approach, the economic dispatch is calculated by time-of-use electricity market pricing method, generating cost decreases by 18.5%, 13.5% if the FP-related combined economic emission dispatch (CEED) is examined, and 15% after evaluating the environmental-constrained-economic-dispatch (ECED). The MG producing cost targets for ECED and ECD are according to renewable energy sources. The best and most system is used for finding a fair compromise between the cost of generating and emission. The smallest values of implementation time and standard deviation of superiority and robustness are achieved.
期刊介绍:
Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.