Eigenvalue Tests for the Number of Latent Factors in Short Panels

IF 1.8 3区 经济学 Q2 BUSINESS, FINANCE Journal of Financial Econometrics Pub Date : 2023-09-08 DOI:10.1093/jjfinec/nbad024
Alain-Philippe Fortin, Patrick Gagliardini, Olivier Scaillet
{"title":"Eigenvalue Tests for the Number of Latent Factors in Short Panels","authors":"Alain-Philippe Fortin, Patrick Gagliardini, Olivier Scaillet","doi":"10.1093/jjfinec/nbad024","DOIUrl":null,"url":null,"abstract":"Abstract This article studies new tests for the number of latent factors in a large cross-sectional factor model with small time dimension. These tests are based on the eigenvalues of variance–covariance matrices of (possibly weighted) asset returns and rely on either an assumption of spherical errors, or instrumental variables for factor betas. We establish the asymptotic distributional results using expansion theorems based on perturbation theory for symmetric matrices. Our framework accommodates semi-strong factors in the systematic components. We propose a novel statistical test for weak factors against strong or semi-strong factors. We provide an empirical application to U.S. equity data. Evidence for a different number of latent factors according to market downturns and market upturns is statistically ambiguous in the considered subperiods. In particular, our results contradict the common wisdom of a single-factor model in bear markets.","PeriodicalId":47596,"journal":{"name":"Journal of Financial Econometrics","volume":"1 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jjfinec/nbad024","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This article studies new tests for the number of latent factors in a large cross-sectional factor model with small time dimension. These tests are based on the eigenvalues of variance–covariance matrices of (possibly weighted) asset returns and rely on either an assumption of spherical errors, or instrumental variables for factor betas. We establish the asymptotic distributional results using expansion theorems based on perturbation theory for symmetric matrices. Our framework accommodates semi-strong factors in the systematic components. We propose a novel statistical test for weak factors against strong or semi-strong factors. We provide an empirical application to U.S. equity data. Evidence for a different number of latent factors according to market downturns and market upturns is statistically ambiguous in the considered subperiods. In particular, our results contradict the common wisdom of a single-factor model in bear markets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短板中潜在因素数目的特征值检验
摘要本文研究了小时间维大截面因子模型中潜在因子数的新检验方法。这些检验基于(可能加权的)资产回报的方差-协方差矩阵的特征值,并依赖于球面误差的假设或因子贝塔的工具变量。利用基于摄动理论的展开式定理,建立了对称矩阵的渐近分布结果。我们的框架容纳了系统组件中的半强因素。我们提出了一种新的弱因素对强或半强因素的统计检验。我们对美国股票数据进行了实证应用。在考虑的子时期中,根据市场低迷和市场上涨,潜在因素的数量不同的证据在统计上是模糊的。特别是,我们的结果与熊市中单因素模型的普遍智慧相矛盾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
8.00%
发文量
39
期刊介绍: "The Journal of Financial Econometrics is well situated to become the premier journal in its field. It has started with an excellent first year and I expect many more."
期刊最新文献
Large-Dimensional Portfolio Selection with a High-Frequency-Based Dynamic Factor Model Exploiting Intraday Decompositions in Realized Volatility Forecasting: A Forecast Reconciliation Approach A Structural Break in the Aggregate Earnings–Returns Relation Large Sample Estimators of the Stochastic Discount Factor Jump Clustering, Information Flows, and Stock Price Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1