Bacher, Peder, Bergsteinsson, Hjörleifur G., Frölke, Linde, Sørensen, Mikkel L., Lemos-Vinasco, Julian, Liisberg, Jon, Møller, Jan Kloppenborg, Nielsen, Henrik Aalborg, Madsen, Henrik
{"title":"Onlineforecast: An R Package for Adaptive and Recursive Forecasting","authors":"Bacher, Peder, Bergsteinsson, Hjörleifur G., Frölke, Linde, Sørensen, Mikkel L., Lemos-Vinasco, Julian, Liisberg, Jon, Møller, Jan Kloppenborg, Nielsen, Henrik Aalborg, Madsen, Henrik","doi":"10.32614/rj-2023-031","DOIUrl":null,"url":null,"abstract":"Systems that rely on forecasts to make decisions, e.g. control or energy trading systems, require frequent updates of the forecasts. Usually, the forecasts are updated whenever new observations become available, hence in an online setting. We present the [R]{.sans-serif} package [[onlineforecast](https://onlineforecasting.org)]{.sans-serif} that provides a generalized setup of data and models for online forecasting. It has functionality for time-adaptive fitting of dynamical and non-linear models. The setup is tailored to enable the effective use of forecasts as model inputs, e.g. numerical weather forecast. Users can create new models for their particular applications and run models in an operational setting. The package also allows users to easily replace parts of the setup, e.g. using new methods for estimation. The package comes with comprehensive vignettes and examples of online forecasting applications in energy systems, but can easily be applied for online forecasting in all fields.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"21 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Systems that rely on forecasts to make decisions, e.g. control or energy trading systems, require frequent updates of the forecasts. Usually, the forecasts are updated whenever new observations become available, hence in an online setting. We present the [R]{.sans-serif} package [[onlineforecast](https://onlineforecasting.org)]{.sans-serif} that provides a generalized setup of data and models for online forecasting. It has functionality for time-adaptive fitting of dynamical and non-linear models. The setup is tailored to enable the effective use of forecasts as model inputs, e.g. numerical weather forecast. Users can create new models for their particular applications and run models in an operational setting. The package also allows users to easily replace parts of the setup, e.g. using new methods for estimation. The package comes with comprehensive vignettes and examples of online forecasting applications in energy systems, but can easily be applied for online forecasting in all fields.
R JournalCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍:
The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R.
The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to:
- put their contribution in context, in particular discuss related R functions or packages;
- explain the motivation for their contribution;
- provide code examples that are reproducible.