Polarization domains and self-mode-locked pulses in an erbium-doped fiber laser

IF 3.3 2区 物理与天体物理 Q2 OPTICS Chinese Optics Letters Pub Date : 2023-01-01 DOI:10.3788/col202321.031402
Peiyun Cheng, Mengmeng Han, Yueqing Du, Xuewen Shu
{"title":"Polarization domains and self-mode-locked pulses in an erbium-doped fiber laser","authors":"Peiyun Cheng, Mengmeng Han, Yueqing Du, Xuewen Shu","doi":"10.3788/col202321.031402","DOIUrl":null,"url":null,"abstract":"We have observed various polarization domains and a giant self-mode-locked pulse in a 130 m long erbium-doped fiber laser without any mode-locking devices. By adjusting the intracavity polarization controller, we investigated the evolution process of the polarization domain with the varying cavity birefringence. When the birefringence was close to zero, the polarization domains split into multidomains, and finally a giant self-mode-locked pulse formed for the first time. We analyzed that the generation of the self-mode-locked pulse was related to the multiple subdomains ascribed to the strong coherent cross coupling between the orthogonal polarization light components in the long fiber cavity.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/col202321.031402","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2

Abstract

We have observed various polarization domains and a giant self-mode-locked pulse in a 130 m long erbium-doped fiber laser without any mode-locking devices. By adjusting the intracavity polarization controller, we investigated the evolution process of the polarization domain with the varying cavity birefringence. When the birefringence was close to zero, the polarization domains split into multidomains, and finally a giant self-mode-locked pulse formed for the first time. We analyzed that the generation of the self-mode-locked pulse was related to the multiple subdomains ascribed to the strong coherent cross coupling between the orthogonal polarization light components in the long fiber cavity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺铒光纤激光器的偏振域和自锁模脉冲
在不加锁模器件的130 m长的掺铒光纤激光器中,我们观察到了不同的极化域和巨大的自锁模脉冲。通过调整腔内偏振控制器,研究了随腔双折射变化的偏振域演化过程。当双折射接近于零时,极化域分裂成多域,最终首次形成巨大的自锁模脉冲。分析了自锁模脉冲的产生与长光纤腔中正交偏振光分量之间的强相干交叉耦合所产生的多子域有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Optics Letters
Chinese Optics Letters 物理-光学
CiteScore
5.60
自引率
20.00%
发文量
180
审稿时长
2.3 months
期刊介绍: Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc. COL is distinguished by its short review period (~30 days) and publication period (~100 days). With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.
期刊最新文献
Photon pair generation from lithium niobate metasurface with tunable spatial entanglement High-dimensional frequency conversion in a hot atomic system All-solid-state far-UVC pulse laser at 222 nm wavelength for UVC disinfection Intracavity third-harmonic generation in a continuous-wave/self-mode-locked semiconductor disk laser Photonics 60 GBaud PDM-16QAM fiber-wireless 2 × 2 MIMO delivery at THz-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1