Nuclear level density in the statistical semiclassical micro-macroscopic approach

IF 0.4 Q4 PHYSICS, NUCLEAR Nuclear Physics and Atomic Energy Pub Date : 2023-09-20 DOI:10.15407/jnpae2023.03.175
A.G. Magner, A.I. Sanzhur, S.N. Fedotkin, A.I. Levon, U.V. Grygoriev, S. Shlomo
{"title":"Nuclear level density in the statistical semiclassical micro-macroscopic approach","authors":"A.G. Magner, A.I. Sanzhur, S.N. Fedotkin, A.I. Levon, U.V. Grygoriev, S. Shlomo","doi":"10.15407/jnpae2023.03.175","DOIUrl":null,"url":null,"abstract":"Level density ρ is derived for a finite system with strongly interacting nucleons at a given energy E, neutron N, and proton Z particle numbers, projection of the angular momentum M, and other integrals of motion, within the semiclassical periodic-orbit theory (POT) beyond the standard Fermi-gas saddle-point method. For large particle numbers, one obtains an analytical expression for the level density which is extended to low excitation energies U in the statistical micro-macroscopic approach (MMA). The interparticle interaction averaged over particle numbers is taken into account in terms of the extended Thomas - Fermi component of the POT. The shell structure of spherical and deformed nuclei is taken into account in the level density by the Strutinsky shell correction method through the mean-field approach used near the Fermi energy surface. The MMA expressions for the level density ρ reaches the well-known macroscopic Fermi-gas asymptote for large excitation energies U and the finite combinatoric power-expansion limit for low energies U. We compare our MMA results for the averaged level density with the experimental data obtained from the known excitation energy spectra by using the sample method under statistical and plateau conditions. Fitting the MMA ρ to these experimental data on the averaged level density by using only one free physical parameter - inverse level density parameter K - for several nuclei and their long isotope chain at low excitation energies U one obtains the results for K. These values of K might be much larger than those deduced from neutron resonances. The shell, isotopic asymmetry, and pairing effects are significant for low excitation energies.","PeriodicalId":42588,"journal":{"name":"Nuclear Physics and Atomic Energy","volume":"60 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics and Atomic Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/jnpae2023.03.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Level density ρ is derived for a finite system with strongly interacting nucleons at a given energy E, neutron N, and proton Z particle numbers, projection of the angular momentum M, and other integrals of motion, within the semiclassical periodic-orbit theory (POT) beyond the standard Fermi-gas saddle-point method. For large particle numbers, one obtains an analytical expression for the level density which is extended to low excitation energies U in the statistical micro-macroscopic approach (MMA). The interparticle interaction averaged over particle numbers is taken into account in terms of the extended Thomas - Fermi component of the POT. The shell structure of spherical and deformed nuclei is taken into account in the level density by the Strutinsky shell correction method through the mean-field approach used near the Fermi energy surface. The MMA expressions for the level density ρ reaches the well-known macroscopic Fermi-gas asymptote for large excitation energies U and the finite combinatoric power-expansion limit for low energies U. We compare our MMA results for the averaged level density with the experimental data obtained from the known excitation energy spectra by using the sample method under statistical and plateau conditions. Fitting the MMA ρ to these experimental data on the averaged level density by using only one free physical parameter - inverse level density parameter K - for several nuclei and their long isotope chain at low excitation energies U one obtains the results for K. These values of K might be much larger than those deduced from neutron resonances. The shell, isotopic asymmetry, and pairing effects are significant for low excitation energies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
统计半经典微观宏观方法中的核能级密度
能级密度ρ在给定能量E、中子N、质子Z粒子数、角动量M的投影和其他运动积分的有限系统中推导,超出标准费米-气体鞍点法。对于大粒子数,得到了能级密度的解析表达式,在统计微宏观方法(MMA)中推广到低激发能U。通过扩展的Thomas - Fermi分量考虑粒子间相互作用在粒子数上的平均值。通过在费米能量面附近使用的平均场方法,采用Strutinsky壳层修正方法在能级密度上考虑了球形核和变形核的壳层结构。能级密度ρ的MMA表达式在大激发能U时达到众所周知的宏观费米-气体渐近线,在低能U时达到有限组合功率展开极限。我们将平均能级密度的MMA结果与在统计和平台条件下用样本方法从已知激发能谱中得到的实验数据进行了比较。对几个核及其长同位素链在低激发能U下的平均能级密度,仅用一个自由物理参数——能级密度逆参数K,拟合这些实验数据的MMA ρ,就得到了K的结果。当激发能较低时,壳层效应、同位素不对称效应和配对效应显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
10
审稿时长
19 weeks
期刊介绍: The journal Nuclear Physics and Atomic Energy presents the publications on Nuclear Physics, Atomic Energy, Radiation Physics, Radioecology, Engineering and Methods of Experiment. The journal includes peer-reviewed articles which are completed works containing new results of theoretical and experimental researches and are of interest for the scientists, postgraduate students, engineers and for the senior students.
期刊最新文献
Estimation of the reserve capacity of Myodes glareolus after acute irradiation using hematological indicators The computer model of a neutron fluxes forming system on a linear electron accelerator Isoscalar monopole response in the neutron-rich molybdenum isotopes using self-consistent QRPA Radioisotopes of cesium and experience of cytogenetic dosimetry in emergency situations Determination of 41Са content in NPP radioactive materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1