{"title":"Isoscalar monopole response in the neutron-rich molybdenum isotopes using self-consistent QRPA","authors":"A. H. Taqi, G. A. Mohammed","doi":"10.15407/jnpae2023.04.306","DOIUrl":null,"url":null,"abstract":"The isoscalar giant monopole resonance (ISGMR) of even molybdenum isotopes 92,94,96,98,100Mo has been studied within the Skyrme self-consistent Hartree - Fock - Bardeen, Cooper, and Schrieffer and quasi-particle random phase approximation. Ten sets of Skyrme-type interactions of different values of the nuclear matter incompressibility coefficient KNM are used in the calculations. The calculated strength distributions, centroid energies Ecen, scaled energies Es and constrained energies Econ of ISGMR are compared with available experimental data. Due to the appropriate value of the nuclear matter incompressibility KNM, several types of Skyrme interactions were successful in describing the ISGMR strength distribution in the 92,94,96,98,100Mo isotopes. As a result, high correlations between Ecen and KNM were found.","PeriodicalId":42588,"journal":{"name":"Nuclear Physics and Atomic Energy","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics and Atomic Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/jnpae2023.04.306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The isoscalar giant monopole resonance (ISGMR) of even molybdenum isotopes 92,94,96,98,100Mo has been studied within the Skyrme self-consistent Hartree - Fock - Bardeen, Cooper, and Schrieffer and quasi-particle random phase approximation. Ten sets of Skyrme-type interactions of different values of the nuclear matter incompressibility coefficient KNM are used in the calculations. The calculated strength distributions, centroid energies Ecen, scaled energies Es and constrained energies Econ of ISGMR are compared with available experimental data. Due to the appropriate value of the nuclear matter incompressibility KNM, several types of Skyrme interactions were successful in describing the ISGMR strength distribution in the 92,94,96,98,100Mo isotopes. As a result, high correlations between Ecen and KNM were found.
期刊介绍:
The journal Nuclear Physics and Atomic Energy presents the publications on Nuclear Physics, Atomic Energy, Radiation Physics, Radioecology, Engineering and Methods of Experiment. The journal includes peer-reviewed articles which are completed works containing new results of theoretical and experimental researches and are of interest for the scientists, postgraduate students, engineers and for the senior students.