{"title":"Exploring the impact of Bi2O3 addition on the thermal properties and crystallization behavior of lead borosilicate glasses","authors":"Yu. S. Hordieiev, A. V. Zaichuk","doi":"10.15251/jor.2023.194.471","DOIUrl":null,"url":null,"abstract":"Novel heavy-metal oxide glasses with different compositions, specifically (80-x)PbO– xBi2O3–10B2O3–10SiO2, where x ranges from 0 to 60 mol%, were synthesized using a conventional melt-quenching technique. The amorphous nature of these glasses was confirmed through X-ray diffraction analysis. Additionally, infrared spectra were obtained for the prepared samples to explore their structural characteristics. Differential thermal analysis was performed to investigate the characteristic temperatures of the glasses, including the glass transition temperature, melting temperature, onset crystallization temperature, and peak crystallization temperature. The addition of Bi2O3 shifts the characteristic temperatures to higher values and affects the crystallization process and phases formed. Parameters like ΔT, KH, and KSP are used to evaluate and quantify glass stability. Dilatometric measurements demonstrated that substituting PbO with Bi2O3 in the glass composition resulted in an increase in glass transition temperature and dilatometric softening temperature, as well as a decrease in the coefficient of thermal expansion. Furthermore, we determined the density and calculated the molar volume of the samples. These findings deepen our understanding of the thermal behavior, glass stability, and structure-property relationships in lead borosilicate glasses with Bi2O3, facilitating the development and customization of glass compositions with desired thermal and physical characteristics for specific applications.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jor.2023.194.471","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Novel heavy-metal oxide glasses with different compositions, specifically (80-x)PbO– xBi2O3–10B2O3–10SiO2, where x ranges from 0 to 60 mol%, were synthesized using a conventional melt-quenching technique. The amorphous nature of these glasses was confirmed through X-ray diffraction analysis. Additionally, infrared spectra were obtained for the prepared samples to explore their structural characteristics. Differential thermal analysis was performed to investigate the characteristic temperatures of the glasses, including the glass transition temperature, melting temperature, onset crystallization temperature, and peak crystallization temperature. The addition of Bi2O3 shifts the characteristic temperatures to higher values and affects the crystallization process and phases formed. Parameters like ΔT, KH, and KSP are used to evaluate and quantify glass stability. Dilatometric measurements demonstrated that substituting PbO with Bi2O3 in the glass composition resulted in an increase in glass transition temperature and dilatometric softening temperature, as well as a decrease in the coefficient of thermal expansion. Furthermore, we determined the density and calculated the molar volume of the samples. These findings deepen our understanding of the thermal behavior, glass stability, and structure-property relationships in lead borosilicate glasses with Bi2O3, facilitating the development and customization of glass compositions with desired thermal and physical characteristics for specific applications.
期刊介绍:
Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.