Schweizer–Sklar Power Aggregation Operators Based on Complex Interval-Valued Intuitionistic Fuzzy Information for Multi-attribute Decision-Making

Umme Kalsoom, Kifayat Ullah, Maria Akram, Dragan Pamucar, Tapan Senapati, Muhammad Naeem, Francesco Pilla, Sarbast Moslem
{"title":"Schweizer–Sklar Power Aggregation Operators Based on Complex Interval-Valued Intuitionistic Fuzzy Information for Multi-attribute Decision-Making","authors":"Umme Kalsoom, Kifayat Ullah, Maria Akram, Dragan Pamucar, Tapan Senapati, Muhammad Naeem, Francesco Pilla, Sarbast Moslem","doi":"10.1007/s44196-023-00343-1","DOIUrl":null,"url":null,"abstract":"Abstract This manuscript proposes the concept of Schweizer–Sklar operational laws under the consideration of the complex interval-valued intuitionistic fuzzy (CIVIF) set theory, where the Schweizer–Sklar norms are the essential and valuable modification of many norms, such as algebraic, Hamacher, and Lukasiewicz norms. Moreover, keeping the dominancy of the presented laws, we derive the concept of CIVIF Schweizer–Sklar power averaging (CIVIFSSPA), CIVIF Schweizer–Sklar power ordered averaging (CIVIFSSPOA), CIVIF Schweizer–Sklar power geometric (CIVIFSSPG), and CIVIF Schweizer–Sklar power ordered geometric (CIVIFSSPOG) operators, which are the combination of the three different structures for evaluating three different problems. Further, some reliable and feasible properties and results for derived work are also invented. Additionally, we also illustrate an application, called multi-attribute decision-making (MADM) scenario for evaluating some real-world problems with the help of discovered operators for showing the reliability and stability of the evaluated operators. Finally, we compare our mentioned operators with various prevailing operators for enhancing the worth and stability of the evaluated approaches.","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"46 8","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44196-023-00343-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This manuscript proposes the concept of Schweizer–Sklar operational laws under the consideration of the complex interval-valued intuitionistic fuzzy (CIVIF) set theory, where the Schweizer–Sklar norms are the essential and valuable modification of many norms, such as algebraic, Hamacher, and Lukasiewicz norms. Moreover, keeping the dominancy of the presented laws, we derive the concept of CIVIF Schweizer–Sklar power averaging (CIVIFSSPA), CIVIF Schweizer–Sklar power ordered averaging (CIVIFSSPOA), CIVIF Schweizer–Sklar power geometric (CIVIFSSPG), and CIVIF Schweizer–Sklar power ordered geometric (CIVIFSSPOG) operators, which are the combination of the three different structures for evaluating three different problems. Further, some reliable and feasible properties and results for derived work are also invented. Additionally, we also illustrate an application, called multi-attribute decision-making (MADM) scenario for evaluating some real-world problems with the help of discovered operators for showing the reliability and stability of the evaluated operators. Finally, we compare our mentioned operators with various prevailing operators for enhancing the worth and stability of the evaluated approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于复杂区间值直觉模糊信息的多属性决策Schweizer-Sklar功率聚合算子
本文在复区间值直觉模糊(CIVIF)集合理论的基础上,提出了Schweizer-Sklar运算律的概念,其中Schweizer-Sklar范数是代数范数、Hamacher范数和Lukasiewicz范数的本质和有价值的修正。在此基础上,我们提出了civf Schweizer-Sklar幂平均算子(CIVIFSSPA)、CIVIF Schweizer-Sklar幂有序平均算子(CIVIFSSPOA)、CIVIF Schweizer-Sklar幂有序几何算子(CIVIFSSPG)和CIVIF Schweizer-Sklar幂有序几何算子(CIVIFSSPOG)的概念,它们是三种不同结构的组合,用于评估三个不同的问题。此外,还提出了一些可靠、可行的性质和结果。此外,我们还举例说明了一个应用程序,称为多属性决策(MADM)场景,用于帮助发现算子来评估一些现实问题,以显示评估算子的可靠性和稳定性。最后,我们将所提到的算子与各种常用算子进行比较,以提高所评估方法的价值和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computational Intelligence Systems
International Journal of Computational Intelligence Systems 工程技术-计算机:跨学科应用
自引率
3.40%
发文量
94
期刊介绍: The International Journal of Computational Intelligence Systems publishes original research on all aspects of applied computational intelligence, especially targeting papers demonstrating the use of techniques and methods originating from computational intelligence theory. The core theories of computational intelligence are fuzzy logic, neural networks, evolutionary computation and probabilistic reasoning. The journal publishes only articles related to the use of computational intelligence and broadly covers the following topics: -Autonomous reasoning- Bio-informatics- Cloud computing- Condition monitoring- Data science- Data mining- Data visualization- Decision support systems- Fault diagnosis- Intelligent information retrieval- Human-machine interaction and interfaces- Image processing- Internet and networks- Noise analysis- Pattern recognition- Prediction systems- Power (nuclear) safety systems- Process and system control- Real-time systems- Risk analysis and safety-related issues- Robotics- Signal and image processing- IoT and smart environments- Systems integration- System control- System modelling and optimization- Telecommunications- Time series prediction- Warning systems- Virtual reality- Web intelligence- Deep learning
期刊最新文献
A LDA-Based Social Media Data Mining Framework for Plastic Circular Economy Identifying People’s Faces in Smart Banking Systems Using Artificial Neural Networks A GMEE-WFED System: Optimizing Wind Turbine Distribution for Enhanced Renewable Energy Generation in the Future Active Exploration Deep Reinforcement Learning for Continuous Action Space with Forward Prediction Optimized Convolutional Forest by Particle Swarm Optimizer for Pothole Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1