{"title":"Probabilistic Interval Ordering Prioritized Averaging Operator and Its Application in Bank Investment Decision Making","authors":"Chuanyang Ruan, Shicheng Gong, Xiangjing Chen","doi":"10.3390/axioms12111007","DOIUrl":null,"url":null,"abstract":"Probabilistic interval ordering, as a helpful tool for expressing positive and negative information, can effectively address multi-attribute decision-making (MADM) problems in reality. However, when dealing with a significant number of decision-makers and decision attributes, the priority relationships between different attributes and their relative importance are often neglected, resulting in deviations in decision outcomes. Therefore, this paper combines probability interval ordering, the prioritized aggregation (PA) operator, and the Gauss–Legendre algorithm to address the MADM problem with prioritized attributes. First, considering the significance of interval priority ordering and the distribution characteristics of attribute priority, the paper introduces probability interval ordering elements that incorporate attribute priority, and it proposes the probabilistic interval ordering prioritized averaging (PIOPA) operator. Then, the probabilistic interval ordering Gauss–Legendre prioritized averaging operator (PIOGPA) is defined based on the Gauss–Legendre algorithm, and various excellent properties of this operator are explored. This operator considers the priority relationships between attributes and their importance level, making it more capable of handling uncertainty. Finally, a new MADM method is constructed based on the PIOGPA operator using probability intervals and employs the arithmetic–geometric mean (AGM) algorithm to compute the weight of each attribute. The feasibility and soundness of the proposed method are confirmed through a numerical example and comparative analysis. The MADM method introduced in this paper assigns higher weights to higher-priority attributes to establish fixed attribute weights, and it reduces the impact of other attributes on decision-making results. It also utilizes the Gauss AGM algorithm to streamline the computational complexity and enhance the decision-making effectiveness.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"36 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms12111007","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Probabilistic interval ordering, as a helpful tool for expressing positive and negative information, can effectively address multi-attribute decision-making (MADM) problems in reality. However, when dealing with a significant number of decision-makers and decision attributes, the priority relationships between different attributes and their relative importance are often neglected, resulting in deviations in decision outcomes. Therefore, this paper combines probability interval ordering, the prioritized aggregation (PA) operator, and the Gauss–Legendre algorithm to address the MADM problem with prioritized attributes. First, considering the significance of interval priority ordering and the distribution characteristics of attribute priority, the paper introduces probability interval ordering elements that incorporate attribute priority, and it proposes the probabilistic interval ordering prioritized averaging (PIOPA) operator. Then, the probabilistic interval ordering Gauss–Legendre prioritized averaging operator (PIOGPA) is defined based on the Gauss–Legendre algorithm, and various excellent properties of this operator are explored. This operator considers the priority relationships between attributes and their importance level, making it more capable of handling uncertainty. Finally, a new MADM method is constructed based on the PIOGPA operator using probability intervals and employs the arithmetic–geometric mean (AGM) algorithm to compute the weight of each attribute. The feasibility and soundness of the proposed method are confirmed through a numerical example and comparative analysis. The MADM method introduced in this paper assigns higher weights to higher-priority attributes to establish fixed attribute weights, and it reduces the impact of other attributes on decision-making results. It also utilizes the Gauss AGM algorithm to streamline the computational complexity and enhance the decision-making effectiveness.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.