Regulation of T16H subcellular localization for promoting its catalytic efficiency in yeast cells.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology Letters Pub Date : 2024-02-01 Epub Date: 2023-11-16 DOI:10.1007/s10529-023-03442-3
Jiancong Cao, Bingrun Yang, Mengxia Zhang, Fang Yu
{"title":"Regulation of T16H subcellular localization for promoting its catalytic efficiency in yeast cells.","authors":"Jiancong Cao, Bingrun Yang, Mengxia Zhang, Fang Yu","doi":"10.1007/s10529-023-03442-3","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the effect of subcellular localization on the transformation efficiency of heterologous expressed functional P450s in yeast. Microbial biotransformation offers a promising substitute for the direct extraction of natural products, but its viability in industrial applications depends on achieving high transformation efficiencies. To investigate the influence of subcellular microenvironments on the activity of heterologously expressed P450s, Catharanthus roseus tabersonine 16-hydroxylase (T16H) was chosen, and its subcellular localization was regulated by fusing organelle-localization signals. Interestingly, this manipulation had no effect on the gene expression levels of T16H, but resulted in varying conversion rates from tabersonine to 16-hydroxy tabersonine. Notably, the highest transformation efficiency was observed in yeast cells expressing peroxisome-localized T16H. Given the alkaline pH optimum for P450s, the alkaline peroxisomal lumen could be a suitable compartment for P450s reactions to achieve high transformation efficiency using yeast cells. Different organelle-localization of T16H in yeast cells resulted in varying conversion rates, suggesting that compartmentalizing the expression of target enzymes could be a viable approach to increase transformation efficiency in yeast.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-023-03442-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the effect of subcellular localization on the transformation efficiency of heterologous expressed functional P450s in yeast. Microbial biotransformation offers a promising substitute for the direct extraction of natural products, but its viability in industrial applications depends on achieving high transformation efficiencies. To investigate the influence of subcellular microenvironments on the activity of heterologously expressed P450s, Catharanthus roseus tabersonine 16-hydroxylase (T16H) was chosen, and its subcellular localization was regulated by fusing organelle-localization signals. Interestingly, this manipulation had no effect on the gene expression levels of T16H, but resulted in varying conversion rates from tabersonine to 16-hydroxy tabersonine. Notably, the highest transformation efficiency was observed in yeast cells expressing peroxisome-localized T16H. Given the alkaline pH optimum for P450s, the alkaline peroxisomal lumen could be a suitable compartment for P450s reactions to achieve high transformation efficiency using yeast cells. Different organelle-localization of T16H in yeast cells resulted in varying conversion rates, suggesting that compartmentalizing the expression of target enzymes could be a viable approach to increase transformation efficiency in yeast.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调控T16H亚细胞定位促进其在酵母细胞中的催化效率。
目的研究亚细胞定位对外源表达功能p450在酵母中转化效率的影响。微生物转化为直接提取天然产物提供了一个有前途的替代品,但其在工业应用中的可行性取决于实现高转化效率。为了研究亚细胞微环境对P450s异源表达活性的影响,我们选择了花蔷薇tabersonine 16-羟化酶(T16H),并通过融合细胞器定位信号调控其亚细胞定位。有趣的是,这种操作对T16H的基因表达水平没有影响,但导致从tabersonine到16-羟基tabersonine的转化率不同。值得注意的是,在表达过氧化物酶体定位的T16H的酵母细胞中观察到最高的转化效率。考虑到p450的最佳碱性pH,碱性过氧化物酶体管腔可以作为p450反应的合适腔室,以实现酵母细胞的高转化效率。酵母细胞中不同的T16H细胞器定位导致了不同的转化率,表明区隔化靶酶的表达可能是一种提高酵母转化效率的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
期刊最新文献
Nepeta cataria L. (catnip) can serve as a chassis for the engineering of secondary metabolic pathways. Overexpression of a pearl millet WRKY transcription factor gene, PgWRKY74, in Arabidopsis retards shoot growth under dehydration and salinity-stressed conditions. Essential amino acid residues and catalytic mechanism of trans-epoxysuccinate hydrolase for production of meso-tartaric acid. Development of a bacterial cellulose-gelatin composite as a suitable scaffold for cardiac tissue engineering. Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1