首页 > 最新文献

Biotechnology Letters最新文献

英文 中文
The pedal-like loop of (R)-selective transaminases plays a critical role to the functionality of the enzyme.
IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-03-18 DOI: 10.1007/s10529-025-03577-5
Chao Xiang, Yu-Ke Ce, Ya-Ping Xue, Yu-Guo Zheng

In enzyme engineering, a lot of studies have focused on engineering the active site to broaden substrate specificity or enhance transaminase activity; however, relatively little is known about the mechanisms by which substrates are recognized and enter the binding pocket. Transaminases play a crucial role in the synthesis of chiral amines due to their exceptional stereoselectivity and catalytic efficiency. In this study, we explored how the pedal-like loop at the active site influences (R)-transaminase (ATA) activity and substrate recognition by modulating the substrate channel. The pedal-like loop at the active site was swapped with loops from other well-characterized transaminases, and the best-performing variant exhibited a 5.2-fold increase in activity toward (R)-phenylethylamine ((R)-PEA) and an 11.8-fold increase in activity toward isopropylamine (IPA). Additionally, some variants showed significant changes in substrate preference. Homology modeling and molecular docking analysis provided compelling evidence that the pedal-like loop is a critical determinant of both substrate recognition and catalytic activity in (R)-ATA.

{"title":"The pedal-like loop of (R)-selective transaminases plays a critical role to the functionality of the enzyme.","authors":"Chao Xiang, Yu-Ke Ce, Ya-Ping Xue, Yu-Guo Zheng","doi":"10.1007/s10529-025-03577-5","DOIUrl":"https://doi.org/10.1007/s10529-025-03577-5","url":null,"abstract":"<p><p>In enzyme engineering, a lot of studies have focused on engineering the active site to broaden substrate specificity or enhance transaminase activity; however, relatively little is known about the mechanisms by which substrates are recognized and enter the binding pocket. Transaminases play a crucial role in the synthesis of chiral amines due to their exceptional stereoselectivity and catalytic efficiency. In this study, we explored how the pedal-like loop at the active site influences (R)-transaminase (ATA) activity and substrate recognition by modulating the substrate channel. The pedal-like loop at the active site was swapped with loops from other well-characterized transaminases, and the best-performing variant exhibited a 5.2-fold increase in activity toward (R)-phenylethylamine ((R)-PEA) and an 11.8-fold increase in activity toward isopropylamine (IPA). Additionally, some variants showed significant changes in substrate preference. Homology modeling and molecular docking analysis provided compelling evidence that the pedal-like loop is a critical determinant of both substrate recognition and catalytic activity in (R)-ATA.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"35"},"PeriodicalIF":2.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of recombinant neurturin expression in Escherichia coli using response surface methodology.
IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-03-18 DOI: 10.1007/s10529-025-03575-7
Zahra Hajihassan, Aysan Yaseri, Mina Yazdi

Neurturin, a neurotrophic growth factor, has been identified as a potential treatment or reversal agent for neurodegenerative conditions. Although Escherichia coli is an appropriate host for recombinant protein expression, the production of proteins with disulfide bonds, such as neurturin, in this strain is frequently accompanied by the formation of inclusion bodies. In this study, the Rosetta-gami strain, which is well-suited for the accurate formation of disulfide bonds was employed for the soluble production of neurturin. Response surface methodology (RSM) was also used to investigate the effects of IPTG concentration, post-induction time and temperature on the soluble production of neurturin. The results showed that the highest yield of neurturin production occurred in the presence of 0.8 mM of IPTG after 5.5 h at 26 ºC. Fractional Factorial Design was used in the subsequent stage to screen the effects of culture medium components on the protein production. The best concentrations of yeast extract, tryptone and MgSO4 to have a significant effect on total protein concentration were determined by RSM design to be 15 g/l for both tryptone and yeast extract and 2.2 g/l for MgSO4. Finally, an experiment was carried out under optimized conditions to evaluate the yield of the process. The results demonstrated a notable enhancement in neurturin production following optimization, with an increase of 8.6-fold compared to the normal condition.

{"title":"Optimization of recombinant neurturin expression in Escherichia coli using response surface methodology.","authors":"Zahra Hajihassan, Aysan Yaseri, Mina Yazdi","doi":"10.1007/s10529-025-03575-7","DOIUrl":"https://doi.org/10.1007/s10529-025-03575-7","url":null,"abstract":"<p><p>Neurturin, a neurotrophic growth factor, has been identified as a potential treatment or reversal agent for neurodegenerative conditions. Although Escherichia coli is an appropriate host for recombinant protein expression, the production of proteins with disulfide bonds, such as neurturin, in this strain is frequently accompanied by the formation of inclusion bodies. In this study, the Rosetta-gami strain, which is well-suited for the accurate formation of disulfide bonds was employed for the soluble production of neurturin. Response surface methodology (RSM) was also used to investigate the effects of IPTG concentration, post-induction time and temperature on the soluble production of neurturin. The results showed that the highest yield of neurturin production occurred in the presence of 0.8 mM of IPTG after 5.5 h at 26 ºC. Fractional Factorial Design was used in the subsequent stage to screen the effects of culture medium components on the protein production. The best concentrations of yeast extract, tryptone and MgSO<sub>4</sub> to have a significant effect on total protein concentration were determined by RSM design to be 15 g/l for both tryptone and yeast extract and 2.2 g/l for MgSO<sub>4</sub>. Finally, an experiment was carried out under optimized conditions to evaluate the yield of the process. The results demonstrated a notable enhancement in neurturin production following optimization, with an increase of 8.6-fold compared to the normal condition.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"36"},"PeriodicalIF":2.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochemical characterization of a bilfunctional endoglucanase/glucomannanase derived from mountain soil. 从山地土壤中提取的双功能内切葡聚糖酶/葡甘露聚糖酶的生物化学特征。
IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-03-14 DOI: 10.1007/s10529-025-03574-8
Justice Kipkorir Rono, Qingyun Zhang, Yong He, Shaochen Wang, Yunbin Lyu, Zhi Min Yang, Zhiyang Feng

Metagenomics is increasingly recognized as a vital technique for exploring uncultured microorganisms, with one key application being the discovery of novel enzymes for industrial use. This study identified an endoglucanase gene from soil metagenome, termed ZFEG1801, which was expressed in E. coli BL21, purified, and characterized for its biochemical properties. The 72.8 kDa recombinant protein exhibited hydrolytic activity against sodium carboxymethyl cellulose (CMC) and konjac glucomannan (KG), with activities of 12.1 U/mg and 42.1 U/mg, respectively. The enzyme displayed optimal activity at pH 5 for CMC and pH 6 for KG, with broad pH stability ranging from 5 to 9. The optimal temperature was 40 °C, and it remained thermally stable between 20 and 40 °C, retaining over 60% of its activity. The enzyme activity remained stable in the presence of most metal ions; however, CMCase activity was inhibited by Cu2+, while glucomannanase activity was inhibited by Mn2+, Fe3+, and Ca2+. The catalytic efficiency towards both substrates was reduced by addition of SDS, DMSO, ethanol, isopropanol and acetonitrile. The Vmax and Km of the purified recombinant enzyme were 106.4 μmol/L/min and 4.9 mg/mL for CMC, and 833.3 μmol/L/min and 11.1 mg/mL for KG, respectively. The dual catalytic properties of ZFEG1801, broad pH stability and resistance to additives, demonstrate its potential for use in various biomass degradation processes.

{"title":"Biochemical characterization of a bilfunctional endoglucanase/glucomannanase derived from mountain soil.","authors":"Justice Kipkorir Rono, Qingyun Zhang, Yong He, Shaochen Wang, Yunbin Lyu, Zhi Min Yang, Zhiyang Feng","doi":"10.1007/s10529-025-03574-8","DOIUrl":"https://doi.org/10.1007/s10529-025-03574-8","url":null,"abstract":"<p><p>Metagenomics is increasingly recognized as a vital technique for exploring uncultured microorganisms, with one key application being the discovery of novel enzymes for industrial use. This study identified an endoglucanase gene from soil metagenome, termed ZFEG1801, which was expressed in E. coli BL21, purified, and characterized for its biochemical properties. The 72.8 kDa recombinant protein exhibited hydrolytic activity against sodium carboxymethyl cellulose (CMC) and konjac glucomannan (KG), with activities of 12.1 U/mg and 42.1 U/mg, respectively. The enzyme displayed optimal activity at pH 5 for CMC and pH 6 for KG, with broad pH stability ranging from 5 to 9. The optimal temperature was 40 °C, and it remained thermally stable between 20 and 40 °C, retaining over 60% of its activity. The enzyme activity remained stable in the presence of most metal ions; however, CMCase activity was inhibited by Cu<sup>2+</sup>, while glucomannanase activity was inhibited by Mn<sup>2+</sup>, Fe<sup>3+</sup>, and Ca<sup>2+</sup>. The catalytic efficiency towards both substrates was reduced by addition of SDS, DMSO, ethanol, isopropanol and acetonitrile. The V<sub>max</sub> and K<sub>m</sub> of the purified recombinant enzyme were 106.4 μmol/L/min and 4.9 mg/mL for CMC, and 833.3 μmol/L/min and 11.1 mg/mL for KG, respectively. The dual catalytic properties of ZFEG1801, broad pH stability and resistance to additives, demonstrate its potential for use in various biomass degradation processes.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"33"},"PeriodicalIF":2.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143630173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic engineering of Escherichia coli for enhanced production of hyaluronic acid.
IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-03-14 DOI: 10.1007/s10529-025-03578-4
Syafira Rizqi Eskasalam, Selim Ashoor, Hyeon Jeong Seong, Yu-Sin Jang

Objectives: To enhance hyaluronic acid (HA) production in Escherichia coli by utilizing hasA genes from Streptococcus pyogenes and Streptococcus parauberis, and employing metabolic engineering strategies.

Results: The expression of the hasA (SpaHasA) gene from S. parauberis in E. coli K12 W3110 led to higher HA production compared to the other gene. Knockout of the zwf and pfkA genes in the engineered E. coli expressing SpaHasA gene, further increased HA production to 891 mg l-1. Overexpression of the galU and ugd genes in the zwf and pfkA double mutant harboring the SpaHasA gene elevated HA output to 1017 mg l-1. Using the same engineered E. coli strain, optimizing the MgSO4 concentration in the culture medium enhanced production to 1187 mg l-1, and in fed-batch fermentation, it achieved 2283 mg HA l-1.

Conclusions: The hasA genes from various Streptococcus groups, especially S. parauberis, significantly boost HA production in E. coli, demonstrating their potential for microbial fermentation applications.

{"title":"Metabolic engineering of Escherichia coli for enhanced production of hyaluronic acid.","authors":"Syafira Rizqi Eskasalam, Selim Ashoor, Hyeon Jeong Seong, Yu-Sin Jang","doi":"10.1007/s10529-025-03578-4","DOIUrl":"https://doi.org/10.1007/s10529-025-03578-4","url":null,"abstract":"<p><strong>Objectives: </strong>To enhance hyaluronic acid (HA) production in Escherichia coli by utilizing hasA genes from Streptococcus pyogenes and Streptococcus parauberis, and employing metabolic engineering strategies.</p><p><strong>Results: </strong>The expression of the hasA (SpaHasA) gene from S. parauberis in E. coli K12 W3110 led to higher HA production compared to the other gene. Knockout of the zwf and pfkA genes in the engineered E. coli expressing SpaHasA gene, further increased HA production to 891 mg l<sup>-1</sup>. Overexpression of the galU and ugd genes in the zwf and pfkA double mutant harboring the SpaHasA gene elevated HA output to 1017 mg l<sup>-1</sup>. Using the same engineered E. coli strain, optimizing the MgSO<sub>4</sub> concentration in the culture medium enhanced production to 1187 mg l<sup>-1</sup>, and in fed-batch fermentation, it achieved 2283 mg HA l<sup>-1</sup>.</p><p><strong>Conclusions: </strong>The hasA genes from various Streptococcus groups, especially S. parauberis, significantly boost HA production in E. coli, demonstrating their potential for microbial fermentation applications.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"34"},"PeriodicalIF":2.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143630105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplicity of infection and culture medium on the SARS-CoV-2 virus like-particles production by baculovirus/insect system.
IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-03-06 DOI: 10.1007/s10529-025-03572-w
Luis Giovani de Oliveira Guardalini, Felipe Moura Dias, Samanta Omae Camalhonte, Jaci Leme, Thaissa Consoni Bernardino, Felipe Soares Sposito, Eduardo Dias, Renato Mancini Astray, Aldo Tonso, Soraia Attie Calil Jorge, Eutimio Gustavo Fernández Núñez

This work aimed to assess the SARS-CoV-2 structural proteins' expression and virus-like particles (VLP) production by Baculovirus/Insect cell platform using two levels of Multiplicity of Infection (MOI), and two culture media, one of them a serum-free medium and the other one chemically defined. Two SARS-CoV-2 VLP were obtained from Sf9 cells coinfection using in both cases, three monocistronic recombinant baculoviruses holding the genes of Nucleocapsid (N; MOI = 2 or 0.2), Membrane (M; MOI = 1 or 0.1), and Envelope (E; MOI = 1 or 0.1) viral proteins, and the fourth one was changed between a baculovirus bearing Spike protein (S; MOI = 3 or 0.3) or receptor-binding domain (RBD; MOI = 3 or 0.3) genes of SARS-CoV-2. Similar performance was verified for both culture media in SARS-CoV-2 VLP production bearing four structural virus proteins or RBD domain. The SARS-CoV-2 structural proteins' expression was comparable at different MOIs (tenfold) as well as SARS-CoV-2 VLP size (around 100 nm). The increase in specific death rates over the coinfection phase was confirmed in relatively high MOI assays. This finding was related to an exponential virus titer profile for high MOIs over the entire infection phase, meanwhile, a viral peak was observed at low MOIs, confirming a secondary infection. The SARS-CoV-2 VLP improved production carrying immunogenic S protein was confirmed concerning others holding RBD. However, the protein composition of produced VLP should be studied further to assess the VLP homogeneity when different culture media and MOIs are used.

{"title":"Multiplicity of infection and culture medium on the SARS-CoV-2 virus like-particles production by baculovirus/insect system.","authors":"Luis Giovani de Oliveira Guardalini, Felipe Moura Dias, Samanta Omae Camalhonte, Jaci Leme, Thaissa Consoni Bernardino, Felipe Soares Sposito, Eduardo Dias, Renato Mancini Astray, Aldo Tonso, Soraia Attie Calil Jorge, Eutimio Gustavo Fernández Núñez","doi":"10.1007/s10529-025-03572-w","DOIUrl":"https://doi.org/10.1007/s10529-025-03572-w","url":null,"abstract":"<p><p>This work aimed to assess the SARS-CoV-2 structural proteins' expression and virus-like particles (VLP) production by Baculovirus/Insect cell platform using two levels of Multiplicity of Infection (MOI), and two culture media, one of them a serum-free medium and the other one chemically defined. Two SARS-CoV-2 VLP were obtained from Sf9 cells coinfection using in both cases, three monocistronic recombinant baculoviruses holding the genes of Nucleocapsid (N; MOI = 2 or 0.2), Membrane (M; MOI = 1 or 0.1), and Envelope (E; MOI = 1 or 0.1) viral proteins, and the fourth one was changed between a baculovirus bearing Spike protein (S; MOI = 3 or 0.3) or receptor-binding domain (RBD; MOI = 3 or 0.3) genes of SARS-CoV-2. Similar performance was verified for both culture media in SARS-CoV-2 VLP production bearing four structural virus proteins or RBD domain. The SARS-CoV-2 structural proteins' expression was comparable at different MOIs (tenfold) as well as SARS-CoV-2 VLP size (around 100 nm). The increase in specific death rates over the coinfection phase was confirmed in relatively high MOI assays. This finding was related to an exponential virus titer profile for high MOIs over the entire infection phase, meanwhile, a viral peak was observed at low MOIs, confirming a secondary infection. The SARS-CoV-2 VLP improved production carrying immunogenic S protein was confirmed concerning others holding RBD. However, the protein composition of produced VLP should be studied further to assess the VLP homogeneity when different culture media and MOIs are used.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"32"},"PeriodicalIF":2.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a fully automated latex-enhanced immunoturbidimetric method for quantitative serum Lp(a) measurement.
IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-03-06 DOI: 10.1007/s10529-025-03564-w
Yanyan Liu, Meijiao Li, Hao Zhang, Le Gao, Jitao Liu, Yue Hou, Jiancheng Xu

Background: Lipoprotein (a) [Lp(a)] is a critical factor in cardiovascular health, composed of low-density lipoprotein-like particles bound to apolipoprotein (a). Elevated Lp(a) levels are associated with an increased risk of cardiovascular diseases (CVD), accelerating disease progression and raising CVD-related mortality. However, the lack of standardized measurement methods for Lp(a) contributes to diagnostic uncertainties in this area.

Method: A quantitative measurement method for serum Lp(a) was developed using fully automated latex-enhanced particle immunoturbidimetry, marking a significant advancement in diagnostic capabilities. Key parameters, including repeatability, stability, linearity, detection limit, interference, and method comparison, were evaluated to ensure the assay's reliability and accuracy.

Result: Lp(a) in samples was detected by carboxylated latex particles (95 nm in diameter) covalently coated with anti-Lp(a) antibodies. Lp(a) concentration was quantified by measuring the turbidity changes caused by agglutination at 600 nm. This method provides rapid, accurate, and fully automated measurements on the Hitachi 7100 automatic biochemical analyzer. With intra-batch precision CV% of 1.10% and inter-batch precision CV% of 1.79%, the method demonstrates reliable performance with Randox biochemical quality control samples. It has a detection limit of 7 mg/L and a high correlation coefficient (R2 = 0.9946) within the 0-1500 mg/L range. Minimal interference from bilirubin, fat emulsion, hemoglobin, and ascorbic acid was observed. Additionally, it shows strong correlation (R2 = 0.9972) with a commercially available latex-enhanced immunoturbidimetric Lp(a) assay reagent, confirming its comparability and clinical suitability.

Conclusion: The quantitative serum Lp(a) determination method based on latex-enhanced immunoturbidimetry offers numerous advantages. It provides rapid, accurate, and automated results, making it ideal for routine clinical testing. The method effectively measures Lp(a) in serum samples by leveraging the interaction between Lp(a) and latex particles.

{"title":"Development of a fully automated latex-enhanced immunoturbidimetric method for quantitative serum Lp(a) measurement.","authors":"Yanyan Liu, Meijiao Li, Hao Zhang, Le Gao, Jitao Liu, Yue Hou, Jiancheng Xu","doi":"10.1007/s10529-025-03564-w","DOIUrl":"https://doi.org/10.1007/s10529-025-03564-w","url":null,"abstract":"<p><strong>Background: </strong>Lipoprotein (a) [Lp(a)] is a critical factor in cardiovascular health, composed of low-density lipoprotein-like particles bound to apolipoprotein (a). Elevated Lp(a) levels are associated with an increased risk of cardiovascular diseases (CVD), accelerating disease progression and raising CVD-related mortality. However, the lack of standardized measurement methods for Lp(a) contributes to diagnostic uncertainties in this area.</p><p><strong>Method: </strong>A quantitative measurement method for serum Lp(a) was developed using fully automated latex-enhanced particle immunoturbidimetry, marking a significant advancement in diagnostic capabilities. Key parameters, including repeatability, stability, linearity, detection limit, interference, and method comparison, were evaluated to ensure the assay's reliability and accuracy.</p><p><strong>Result: </strong>Lp(a) in samples was detected by carboxylated latex particles (95 nm in diameter) covalently coated with anti-Lp(a) antibodies. Lp(a) concentration was quantified by measuring the turbidity changes caused by agglutination at 600 nm. This method provides rapid, accurate, and fully automated measurements on the Hitachi 7100 automatic biochemical analyzer. With intra-batch precision CV% of 1.10% and inter-batch precision CV% of 1.79%, the method demonstrates reliable performance with Randox biochemical quality control samples. It has a detection limit of 7 mg/L and a high correlation coefficient (R<sup>2</sup> = 0.9946) within the 0-1500 mg/L range. Minimal interference from bilirubin, fat emulsion, hemoglobin, and ascorbic acid was observed. Additionally, it shows strong correlation (R<sup>2</sup> = 0.9972) with a commercially available latex-enhanced immunoturbidimetric Lp(a) assay reagent, confirming its comparability and clinical suitability.</p><p><strong>Conclusion: </strong>The quantitative serum Lp(a) determination method based on latex-enhanced immunoturbidimetry offers numerous advantages. It provides rapid, accurate, and automated results, making it ideal for routine clinical testing. The method effectively measures Lp(a) in serum samples by leveraging the interaction between Lp(a) and latex particles.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"31"},"PeriodicalIF":2.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the hydrophilic microenvironment surrounding the catalytic site of fructosyltransferase enhances its catalytic ability.
IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-26 DOI: 10.1007/s10529-025-03566-8
Fanzhi Wang, Suren Singh, Kugen Permaul

The hydrophilic microenvironment surrounding an enzyme's active site can influence its catalytic activity. This study examines the effect of enhancing this environment in the Aspergillus niger fructosyltransferase, SucC. Bioinformatics analysis identified a cysteine residue (C66) near the catalytic triad (D64, D194, E271) as vital for maintaining the active site's structure and facilitating substrate transport. Simulated mutagenesis suggested that mutating cysteine to serine (C66S) could increase hydrophilicity without altering the structure significantly. This mutation was predicted to enhance substrate affinity, with binding energy changing from -3.65 to -4.14 kcal mol-1. The C66S mutant, expressed in Pichia pastoris GS115, showed a 61.3% increase in specific activity, a 13.5% decrease in Km (82.20/71.14 mM), and a 21.6% increase in kcat (112.23/136.48 min-1), resulting in a 40.1% increase in catalytic efficiency (1.37/1.92 min-1 mM-1). For fructooligosaccharides (FOS) production, C66S demonstrated enhanced transfructosylation, particularly in the initial stages of the reaction, achieving higher overall FOS yields. These findings highlight that modifying the active site hydrophilicity, without causing major structural changes, is a promising strategy for improving an enzyme's catalytic efficiency.

{"title":"Improving the hydrophilic microenvironment surrounding the catalytic site of fructosyltransferase enhances its catalytic ability.","authors":"Fanzhi Wang, Suren Singh, Kugen Permaul","doi":"10.1007/s10529-025-03566-8","DOIUrl":"10.1007/s10529-025-03566-8","url":null,"abstract":"<p><p>The hydrophilic microenvironment surrounding an enzyme's active site can influence its catalytic activity. This study examines the effect of enhancing this environment in the Aspergillus niger fructosyltransferase, SucC. Bioinformatics analysis identified a cysteine residue (C66) near the catalytic triad (D64, D194, E271) as vital for maintaining the active site's structure and facilitating substrate transport. Simulated mutagenesis suggested that mutating cysteine to serine (C66S) could increase hydrophilicity without altering the structure significantly. This mutation was predicted to enhance substrate affinity, with binding energy changing from -3.65 to -4.14 kcal mol<sup>-1</sup>. The C66S mutant, expressed in Pichia pastoris GS115, showed a 61.3% increase in specific activity, a 13.5% decrease in K<sub>m</sub> (82.20/71.14 mM), and a 21.6% increase in k<sub>cat</sub> (112.23/136.48 min<sup>-1</sup>), resulting in a 40.1% increase in catalytic efficiency (1.37/1.92 min<sup>-1</sup> mM<sup>-1</sup>). For fructooligosaccharides (FOS) production, C66S demonstrated enhanced transfructosylation, particularly in the initial stages of the reaction, achieving higher overall FOS yields. These findings highlight that modifying the active site hydrophilicity, without causing major structural changes, is a promising strategy for improving an enzyme's catalytic efficiency.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"30"},"PeriodicalIF":2.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement hispolon production from Phellinus linteus via epigenetic-modified culture to inhibit human breast cancer cells.
IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-26 DOI: 10.1007/s10529-025-03561-z
Phongsakorn Chueaphromsri, Phongsakorn Kunhorm, Nipha Chaicharoenaudomrung, Parinya Noisa

Phellinus linteus (PL) is a medicinal fungus known for producing hispolon, a bioactive compound with antioxidant, anti-inflammatory, and anticancer properties. However, the natural scarcity of PL and the unsuccessful cultivation of its fruiting bodies have led to the exploration of alternative methods for enhancing its bioactive compound production. In this study, static fermentation was employed, and Valproic acid (VPA), a histone deacetylase inhibitor (HDACi), was added to the culture medium to induce epigenetic modifications and enhance hispolon production. After 30 days of fermentation, the hispolon concentration was analyzed using high-performance liquid chromatography (HPLC), mycelial dry weight was measured, and the expression of hispolon synthesis-related enzymes was quantified using quantitative PCR (qPCR). Additionally, the anticancer potential of the fermented media was assessed in human breast adenocarcinoma HTB-26 cells using assays for cytotoxicity, reactive oxygen species (ROS) formation, apoptosis, antioxidant activity, and autophagy markers. The results revealed that the addition of 400 µM VPA increased hispolon production by 120% and mycelial dry weight by 41%, likely due to enhanced transcriptional accessibility. Furthermore, the PL fermentation media significantly inhibited HTB-26 cell growth through the induction of ROS formation, autophagy, and apoptosis. These findings suggest that VPA-enhanced static fermentation of PL offers a promising strategy for optimizing hispolon production and developing effective anticancer therapeutics.

{"title":"Enhancement hispolon production from Phellinus linteus via epigenetic-modified culture to inhibit human breast cancer cells.","authors":"Phongsakorn Chueaphromsri, Phongsakorn Kunhorm, Nipha Chaicharoenaudomrung, Parinya Noisa","doi":"10.1007/s10529-025-03561-z","DOIUrl":"https://doi.org/10.1007/s10529-025-03561-z","url":null,"abstract":"<p><p>Phellinus linteus (PL) is a medicinal fungus known for producing hispolon, a bioactive compound with antioxidant, anti-inflammatory, and anticancer properties. However, the natural scarcity of PL and the unsuccessful cultivation of its fruiting bodies have led to the exploration of alternative methods for enhancing its bioactive compound production. In this study, static fermentation was employed, and Valproic acid (VPA), a histone deacetylase inhibitor (HDACi), was added to the culture medium to induce epigenetic modifications and enhance hispolon production. After 30 days of fermentation, the hispolon concentration was analyzed using high-performance liquid chromatography (HPLC), mycelial dry weight was measured, and the expression of hispolon synthesis-related enzymes was quantified using quantitative PCR (qPCR). Additionally, the anticancer potential of the fermented media was assessed in human breast adenocarcinoma HTB-26 cells using assays for cytotoxicity, reactive oxygen species (ROS) formation, apoptosis, antioxidant activity, and autophagy markers. The results revealed that the addition of 400 µM VPA increased hispolon production by 120% and mycelial dry weight by 41%, likely due to enhanced transcriptional accessibility. Furthermore, the PL fermentation media significantly inhibited HTB-26 cell growth through the induction of ROS formation, autophagy, and apoptosis. These findings suggest that VPA-enhanced static fermentation of PL offers a promising strategy for optimizing hispolon production and developing effective anticancer therapeutics.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"29"},"PeriodicalIF":2.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide screening of mitogen-activated protein kinase (MAPK) gene family and expression profile under heavy metal stress in Solanum lycopersicum.
IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-19 DOI: 10.1007/s10529-025-03567-7
Hasan Can, Ilhan Dogan, Mehmet Emin Uras, Fatih Tabanli, Asli Hocaoglu-Ozyigit, Ibrahim Ilker Ozyigit

MAPKs are one of the essential signal transduction complexes which are responsible for the perception of abiotic stress and for the producing of related transcripts for responding to abiotic stress. For systematical analyzes of the mitogen-activated protein (MAP) kinase gene families and their expression profiles in Solanum lycopersicum L. exposed to diverse heavy metal stresses, 17 SlMAPK genes were studied in comparison with their 159 orthologs from various plant species. The result of phylogenetic analysis revealed that SlMAPKs were divided into four different subgroups (A, B, C, and D) based on their nucleic acid and protein sequence alignments. SlMAPKs including A, B and C group had lower molecular weights and more hydrophobic structures than D group SlMAPKs, while possible extra phosphorylation sites predicted in D-group SLMAPKs. 24 cis regulating elements such as Box 4, TATA-box, ABRE and CAAT-box were detected in their upstream parts of DNA sequences. Also, it was determined that SlMAPKs show interactions with important proteins such as Guanine nucleotide-binding protein beta subunit, heterotrimeric G-protein, protein phosphatase 2C and HY5. The results from our gene expression analyzes, significant increases were found in the expressions of the selected SLMAPK gene with applications of a range of increasing heavy metal concentrations (e.g., by the application of the 400 mM Ni + Pb exposure, a 16-fold increase in the expression of SlMAPK gene was noted). Overall, SlMAPK genes and proteins known were re-evaluated, and the SlMAPKs interactions with some other important proteins were observed. Also, some predictions about the extra phosphorylation sites of SlMAPKs having effects on their functions were done. In addition, the expression levels of SlMAPK genes were monitored under different levels of heavy metal stress exposures.

{"title":"Genome-wide screening of mitogen-activated protein kinase (MAPK) gene family and expression profile under heavy metal stress in Solanum lycopersicum.","authors":"Hasan Can, Ilhan Dogan, Mehmet Emin Uras, Fatih Tabanli, Asli Hocaoglu-Ozyigit, Ibrahim Ilker Ozyigit","doi":"10.1007/s10529-025-03567-7","DOIUrl":"https://doi.org/10.1007/s10529-025-03567-7","url":null,"abstract":"<p><p>MAPKs are one of the essential signal transduction complexes which are responsible for the perception of abiotic stress and for the producing of related transcripts for responding to abiotic stress. For systematical analyzes of the mitogen-activated protein (MAP) kinase gene families and their expression profiles in Solanum lycopersicum L. exposed to diverse heavy metal stresses, 17 SlMAPK genes were studied in comparison with their 159 orthologs from various plant species. The result of phylogenetic analysis revealed that SlMAPKs were divided into four different subgroups (A, B, C, and D) based on their nucleic acid and protein sequence alignments. SlMAPKs including A, B and C group had lower molecular weights and more hydrophobic structures than D group SlMAPKs, while possible extra phosphorylation sites predicted in D-group SLMAPKs. 24 cis regulating elements such as Box 4, TATA-box, ABRE and CAAT-box were detected in their upstream parts of DNA sequences. Also, it was determined that SlMAPKs show interactions with important proteins such as Guanine nucleotide-binding protein beta subunit, heterotrimeric G-protein, protein phosphatase 2C and HY5. The results from our gene expression analyzes, significant increases were found in the expressions of the selected SLMAPK gene with applications of a range of increasing heavy metal concentrations (e.g., by the application of the 400 mM Ni + Pb exposure, a 16-fold increase in the expression of SlMAPK gene was noted). Overall, SlMAPK genes and proteins known were re-evaluated, and the SlMAPKs interactions with some other important proteins were observed. Also, some predictions about the extra phosphorylation sites of SlMAPKs having effects on their functions were done. In addition, the expression levels of SlMAPK genes were monitored under different levels of heavy metal stress exposures.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"27"},"PeriodicalIF":2.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
O2-microbubble of iron-porphyrin conjugated polyaspartamide for molecular ultrasound contrast effect.
IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-19 DOI: 10.1007/s10529-025-03571-x
Yoon Na Cho, Jun Woo Lim, Seung Joo Oh, Sa Ra Han, Sungwoo Cho, Jimin Jeong, Byoung Hee Han, Jae Hyun Jeong

Objective: This study aimed to prepare oxygen-microbubbles incorporating ferrous porphyrin to emulate the oxygen-capturing ability of hemoglobin porphyrin in red blood cells.

Results: We synthesized poly(2-hydroxyethyl aspartamide) (PHEA) grafted with ferrous porphyrins (Iron-P-PHEA) and created microbubbles using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. These microbubbles trapped oxygen and retained it over a 2 h period. The O2-microbubbles demonstrated an enhanced photoacoustic effect as an ultrasound contrast agent, as confirmed by Doppler ultrasound testing.

Conclusions: The innovative strategy for O2-microbubble preparation enhances the efficiency of targeted delivery in molecular optical and ultrasound imaging.

{"title":"O<sub>2</sub>-microbubble of iron-porphyrin conjugated polyaspartamide for molecular ultrasound contrast effect.","authors":"Yoon Na Cho, Jun Woo Lim, Seung Joo Oh, Sa Ra Han, Sungwoo Cho, Jimin Jeong, Byoung Hee Han, Jae Hyun Jeong","doi":"10.1007/s10529-025-03571-x","DOIUrl":"https://doi.org/10.1007/s10529-025-03571-x","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to prepare oxygen-microbubbles incorporating ferrous porphyrin to emulate the oxygen-capturing ability of hemoglobin porphyrin in red blood cells.</p><p><strong>Results: </strong>We synthesized poly(2-hydroxyethyl aspartamide) (PHEA) grafted with ferrous porphyrins (Iron-P-PHEA) and created microbubbles using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. These microbubbles trapped oxygen and retained it over a 2 h period. The O<sub>2</sub>-microbubbles demonstrated an enhanced photoacoustic effect as an ultrasound contrast agent, as confirmed by Doppler ultrasound testing.</p><p><strong>Conclusions: </strong>The innovative strategy for O<sub>2</sub>-microbubble preparation enhances the efficiency of targeted delivery in molecular optical and ultrasound imaging.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"28"},"PeriodicalIF":2.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biotechnology Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1