Ruisan Zhang, Xinliang He, Jianghong Cheng, Xiaofan Zhang, Chen Han, Yifan Liu, Peng Chen, Yang Wang
{"title":"(m) RVD-hemopressin (α) Ameliorated Oxidative Stress, Apoptosis and Damage to the BDNF/TrkB/Akt Pathway Induced by Scopolamine in HT22 Cells.","authors":"Ruisan Zhang, Xinliang He, Jianghong Cheng, Xiaofan Zhang, Chen Han, Yifan Liu, Peng Chen, Yang Wang","doi":"10.1007/s12640-023-00677-w","DOIUrl":null,"url":null,"abstract":"<p><p>Dysfunction in the cholinergic system and oxidative stress are closely related and play roles in Alzheimer's disease (AD). Scopolamine (Scop), which is commonly used to induce cholinergic system damage in cells and animals, also evokes oxidative stress. Our previous study indicated that the peptide (m) RVD-hemopressin (RVD) reversed the memory-impairing effect of Scop in mice by activating cannabinoid receptor 1 (CBR1), but the mechanism was unclear. In this study, we found that RVD inhibited the oxidative stress, apoptosis, decreased cell viability and downregulation of synapse-associated proteins induced by Scop in HT22 cells. The effect was associated with the BDNF/TrkB/Akt pathway, and the effects of RVD outlined above could be blocked by an antagonist of CBR1. These results suggest that RVD may be a potential drug candidate for disorders associated with damage to the cholinergic system and oxidative stress, such as AD.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":" ","pages":"627-637"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-023-00677-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dysfunction in the cholinergic system and oxidative stress are closely related and play roles in Alzheimer's disease (AD). Scopolamine (Scop), which is commonly used to induce cholinergic system damage in cells and animals, also evokes oxidative stress. Our previous study indicated that the peptide (m) RVD-hemopressin (RVD) reversed the memory-impairing effect of Scop in mice by activating cannabinoid receptor 1 (CBR1), but the mechanism was unclear. In this study, we found that RVD inhibited the oxidative stress, apoptosis, decreased cell viability and downregulation of synapse-associated proteins induced by Scop in HT22 cells. The effect was associated with the BDNF/TrkB/Akt pathway, and the effects of RVD outlined above could be blocked by an antagonist of CBR1. These results suggest that RVD may be a potential drug candidate for disorders associated with damage to the cholinergic system and oxidative stress, such as AD.
期刊介绍:
Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes.
Published papers have focused on:
NEURODEGENERATION and INJURY
Neuropathologies
Neuronal apoptosis
Neuronal necrosis
Neural death processes (anatomical, histochemical, neurochemical)
Neurodegenerative Disorders
Neural Effects of Substances of Abuse
NERVE REGENERATION and RESPONSES TO INJURY
Neural Adaptations
Neurotrophin mechanisms and actions
NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION
Excitatory amino acids
Neurotoxins, endogenous and synthetic
Reactive oxygen (nitrogen) species
Neuroprotection by endogenous and exogenous agents
Papers on related themes are welcome.